Con

Please evaluate
my talk via the
mobile app!

CONFERENCE



Dev "Programming" Ops
for
DevOps Success

QCon London

So ftw I pm
Conference 2013




Damon Edwards

| | @damonedwards

> j 'dev20ps org

i
‘ [\\k . DevOps Cafe



mailto:damon@dtosolutions.com
mailto:damon@dtosolutions.com

Disclosure: DevOps (to me)



Disclosure: DevOps (to me)

DevOps is not

¢ a specific methodology or prescriptive steps
e only achievable by “one true way”

* a job title or group name



Disclosure: DevOps (to me)

DevOps is not

¢ a specific methodology or prescriptive steps
e only achievable by “one true way”

® a job title or group name

DevOps is

® a way of seeing your problems

e a way of evaluating solutions

e a way of communicating these things
e always evolving



Damon Edwards

webex T\ resormony O infurd

d 0 DevOps Consulting
> —
Automation Design a». ﬁ backeountry =

SOLUTIONS

#SimplifyOps

@ Adobe Omgeo 5{
2 Linked
)ﬂ £ynga \\\\l”// barclaycard
tat
a
E¥TRADE JPMORGAN CHASE & Co. bwin.party ...

FINANCIAL

WILLIAMS-SONOMA  digby BTQ vmware

Open Source R U N
-

DECK




What every business wants

f Time-to-market

f Quality



What every business wants

f Time-to-market

f Quality

f Effectiveness




What every business wants

f Time-to-market

f Quality

. Do more, but don’t
f Effectiveness (Spe,,d any more! )




What’s stopping them?



= ﬂ'lmq!|l|m|m| = "E

Photo credit: Doc Searls on Flickr



'
|
|

Photo credit: Doc Searls on Flickr



a
< — S S S | SN S § 0 S 6 S G T

Photo credit: Doc Searls on Flickr



of

e + Shorten € ------ :

Dev 2 v‘e‘“o\l
7,

D

Photo credit: Doc Searls on Flickr



S S s O S

Photo credit: Doc Searls on Flickr

You are here



“..but how can we start a DevOps
transformation from our Dev silo?”



Dev initiated DevOps Transformation



Dev initiated DevOps Transformation

1. Take an “Operations First” mindset



Understand the pressure on Ops

Availability Auditing

i

~.. Security Compliance




What is the product?




What is the product?

e Are customers paying for a running service?



What is the product?

e Are customers paying for a running service?

* Then the running service is the product



What is the product?

e Are customers paying for a running service?

* Then the running service is the product
e Operations is your “factory floor” and “storefront”



What is the product?

e Are customers paying for a running service?

* Then the running service is the product

e Operations is your “factory floor” and “storefront”
e Everything else is a “parts supplier”



What is the product?

e Are customers paying for a running service?

* Then the running service is the product

e Operations is your “factory floor” and “storefront”

e Everything else is a “parts supplier”
¢ (Yes, that includes Developers)



What is the product?

e Are customers paying for a running service?

* Then the running service is the product

e Operations is your “factory floor” and “storefront”

e Everything else is a “parts supplier”
¢ (Yes, that includes Developers)

o |[f the service isn’t running, there is no product or
business



“-1lities” are product features



“-1lities” are product features

e Stability, scalability, availability, security,
etc... are all features



“-1lities” are product features

e Stability, scalability, availability, security,
etc... are all features

e Like all features, you get what you invest



“-1lities” are product features

e Stability, scalability, availability, security,
etc... are all features

e Like all features, you get what you invest

e Operations Requirements should be
first class citizens in your backlog

¥
ﬁ —>

Funcational
Requirements

Backlog

@%ﬁ

Operational
Requirements




You are developing services (not software)



You are developing services (not software)

e Software is a service when it is running and
managed



You are developing services (not software)

e Software is a service when it is running and
managed

e Deployment and configuration is automated



You are developing services (not software)

e Software is a service when it is running and
managed

e Deployment and configuration is automated

e Standard operating procedures are automated



You are developing services (not software)

e Software is a service when it is running and
managed

e Deployment and configuration is automated
e Standard operating procedures are automated

e Tests/Health Checks/Monitoring at service level



You are developing services (not software)

e Software is a service when it is running and
managed

e Deployment and configuration is automated
e Standard operating procedures are automated

e Tests/Health Checks/Monitoring at service level

e You are developing a service... so this is part of
your deliverable



Redefine “done”



Redefine “done”
Old “Done”




Redefine “done”
Old “Done”

e\Work is "done" when it moves
downstream




Redefine “done”
Old “Done”

e\Work is "done" when it moves
downstream

eNo shared sense of "done"




Redefine “done”
Old “Done”

e\Work is "done" when it moves
downstream

eNo shared sense of "done"

o Developers commit code to
repository



Redefine “done”
Old “Done”

e\Work is "done" when it moves
downstream

eNo shared sense of "done"

o Developers commit code to
repository
o Time for a party: code complete!



Redefine “done”

Old “Done”

e\Work is "done" when it moves
downstream

eNo shared sense of "done"

o Developers commit code to
repository

o Time for a party: code complete!

o The work just begins for
Operations to figure out how to

run it in production



Redefine “done”

Old “Done”

e\Work is "done" when it moves
downstream

eNo shared sense of "done"

o Developers commit code to
repository

o Time for a party: code complete!

o The work just begins for
Operations to figure out how to

run it in production

New “Done”




Redefine “done”

Old “Done”

e\Work is "done" when it moves
downstream

eNo shared sense of "done"

o Developers commit code to
repository

o Time for a party: code complete!

o The work just begins for
Operations to figure out how to

run it in production

New “Done”
e|t's running




Redefine “done”

Old “Done”

e\Work is "done" when it moves
downstream

eNo shared sense of "done"

o Developers commit code to
repository

o Time for a party: code complete!

o The work just begins for
Operations to figure out how to

run it in production

New “Done”
e|t's running
¢|t's managed




Redefine “done”

Old “Done”

e\Work is "done" when it moves
downstream

eNo shared sense of "done"

o Developers commit code to
repository

o Time for a party: code complete!

o The work just begins for
Operations to figure out how to

run it in production

New “Done”
e|t's running
¢|t's managed
eCustomer accessible




Redefine “done”

Old “Done”

e\Work is "done" when it moves
downstream

eNo shared sense of "done"

o Developers commit code to
repository

o Time for a party: code complete!

o The work just begins for
Operations to figure out how to

run it in production

New “Done”
e|t's running
¢|t's managed
eCustomer accessible

eBehaving properly



Redefine “done”

Old “Done” New “Done”
eWork is "done" when it moves e[t's running
downstream *|t's managed
*No shared sense of "done” eCustomer accessible
® Develf)pers commit code to eBehaving properly
repository

o Time for a party: code complete!
o The work just begins for

Operations to figure out how to
run it in production

Development of a feature can be “done”. But a service is
never “done” until it is turned off!



If you want freedom, take responsibility



If you want freedom, take responsibility

Old Way




If you want freedom, take responsibility

Old Way

e Developers owned feature
requirements




If you want freedom, take responsibility

Old Way

e Developers owned feature
requirements

e Operations owned
performance and uptime



If you want freedom, take responsibility

Old Way

e Developers owned feature
requirements

e Operations owned
performance and uptime

e QA owned quality



If you want freedom, take responsibility

Old Way

e Developers owned feature
requirements

e Operations owned
performance and uptime

e QA owned quality

e Security owned security



If you want freedom, take responsibility

Old Way

e Developers owned feature
requirements

e Operations owned
performance and uptime

e QA owned quality
e Security owned security

e etc...



If you want freedom, take responsibility

Old Way New Way

e Developers owned feature
requirements

e Operations owned
performance and uptime

e QA owned quality
e Security owned security

e etc...



If you want freedom, take responsibility

Old Way New Way

e Developers owned feature e Developers own their application
requirements

e Operations owned
performance and uptime

e QA owned quality
e Security owned security

e etc...



If you want freedom, take responsibility

Old Way New Way
e Developers owned feature e Developers own their application
requirements e Operations owns infrastructure
e Operations owned and common tooling

performance and uptime
e QA owned quality
e Security owned security

e etc...



If you want freedom, take responsibility

Old Way New Way
e Developers owned feature ® Developers own their application
requirements e Operations owns infrastructure
e Operations owned and common tooling
performance and uptime e Everybody owns quality,
e QA owned quality availability, security for the thing

they produce and shared
responsibility for things that
consume it

e Security owned security

e etc...



If you want freedom, take responsibility

Old Way New Way
e Developers owned feature e Developers own their application
requirements e Operations owns infrastructure
e Operations owned and common tooling
performance and uptime e Everybody owns quality,
e QA owned quality availability, security for the thing

they produce and shared
responsibility for things that
consume it

e Security owned security

e etc...




Dev initiated DevOps Transformation

1. Take an “operations first” mindset

2. Build organizational alignment



What is organizational alignment?



What is organizational alignment?

* 1000’s of small decisions made daily
e How do we harness that?



What is organizational alignment?

* 1000’s of small decisions made daily
e How do we harness that?

e Top down is brittle

e Conditions, people, tools are always
changing... how do we handle that?



What is organizational alignment?

* 1000’s of small decisions made daily
e How do we harness that?

e Top down is brittle

e Conditions, people, tools are always
changing... how do we handle that?

e Alignment is when you know that different
individuals would independently see a set of
conditions and arrive at the same decision that is
correct for the company’s goal



What is organizational alignment? <

- SMALL UNIT
LEADERSHIP

* 1000’s of small decisions made daily
e How do we harness that?

e Top down is brittle ESeasrsiss
N

o Conditions, people, tools are always s sumase s sne usa mees-
changing... how do we handle that?

e Alignment is when you know that different
individuals would independently see a set of
conditions and arrive at the same decision that is
correct for the company’s goal



What does an aligned organization “see”?



What does an aligned organization “see”?

expanded from




What does an aligned organization “see”?

1. See the system

------------------------------------------- expanded from




What does an aligned organization “see”?

1. See the system

---------------------------------------------- expanded from
,,,,,,,
1 .
~~~~~~~~~ Dev ) Ops
.‘
2. Focus on flow ;
| (Business) |




What does an aligned organization “see”?

1. See the system

---------------------------------------------- expanded from
———————
{ .
~~~~~~~~~ Dev »Ops
.‘
2. Focus on flow ;
| (Business) |
O _y Ors

3. Recognize feedback loops

ol >

ev ' Ors



What does an aligned organization “see”?

1. See the system

--------------------------------------------- expanded from
el O .
4 ] -
RN ev s '''' ’ :( 7
~-~~“‘-~€____M-9? ____________ \ ! #{#}‘
-------------------- . Fﬁggfg{"
2. Focus on flow L=
Dev ) Ors

3. Recognize feedback loops

ol >

ev ‘ Ors
4. Look for continuous improvement opportunities

¢ CLTED) D

ev .



Sure... but how do you do that?



Building organizational alignment



Building organizational alignment

1. Socialize the concepts and vocabulary



Building organizational alignment

1. Socialize the concepts and vocabulary
2. Visualize the system



Building organizational alignment

1. Socialize the concepts and vocabulary
2. Visualize the system
a. value stream mapping



Building organizational alignment

1. Socialize the concepts and vocabulary
2. Visualize the system

a. value stream mapping

b. timeline analysis



Building organizational alignment

1. Socialize the concepts and vocabulary
2. Visualize the system

a. value stream mapping

b. timeline analysis

c. waste analysis



Value Stream Mappi

«Q

Current state value stream map

Steering
Committee

Erica Switzer

Full
Projects /
Expedites

L/T | Lead time
P/T | Process time
H/C | Head count
S/R | Scrap rate

Business Analyst

- D | Defects
Estimates
and EP | Extra processes
requirements M [ Motion

PD | Partially done
TS | Task switching
W | Waiting

Project Manager

Erica Switzer

Change Creative

RT tickets

S request ch
Daily Scrum ange
Mx3 meeting Request QA Control Forms Program Management
build
Dx3 Technical N _Developmenl
Develop Specification Daily Scrum Deployment
web assets meeting Meeting - Svol
Jira issues iness Syste ;
Support

Release Engineering
hnical Operatio

Web Assets, Deployment
TR flpws and Document Stan Walters
SR | 5%
Bob McNuItx Wx2 RT tickets Change
Release Control
Build and deploy
EP service 8 weeks 8 hours
Cut project branch —— branches 4 weeks P/T | 4 hours P/T |1 day P/T | 7 hours W
HIC |5 H/C | 1 HIC |5 H/C |1 Mx2
(L 115 mnutes | SIR | 25% SR 10% S/R | 95% SR 2% D Mx8 Dx2
- Joe Harbaugh Joe Harbaugh Joe Harbaugh Fernando Gomez EP 3 EP .
P/T_| 5 minutes | doefarbougn | |Joe bobavgn | |doe Harbaugn | —— Tested oy to Sta Boinerrestil Deplgyts™  EF > Merge project
H/IC |1 packages uction branch
SR | 0% ————— -
Chris Holmes 4 weeks L/T | 6days LT | 1week L/T_| 9 hours L/T_| 30 minutes
5 hours P/T | 2.5 weeks P/T_| 90 minutes P/T_| 3.5 days P/T_| 8 hours P/T_| 30 minutes
Environments 2 H/IC 4 H/IC [ 4 HIC |6 H/IC |1
Documented SR | 10% S/IR | 20% SIR | 66% | S/R | 66% SIR | 33%
test plans Raj Lee Raj Lee Frances Middleton Allen Cannata Fernando Gomez
and cases * S T T ———
QA t Production
Environments Environment Environment
L/T | 5days LT ]2 week
P/T | 4 days P/T_| 8 days
H/IC |1 HIC |2
S/R [10% S/R [ 20% 1
Ral Lo Ral Lo Deploy to —_— erformance
* * ‘erformanc testing
L/T | 6 days LT |1 week
P/T_| 90 minutes P/T_| 3 days
H/IC |3 H/C |1
S/R | 66% SIR | 66% |
Frances Middleton Allen Cannata
T T
Performance
Environment
Process Time
4 weeks 4 weeks 4 hours 1 day 7 hours 5 hours 2.5 weeks 90 minutes 3.5 days 8 hours =62 days

2 weeks I | 4 weeks I |1.5 daysI | I | 1 hours I 4.5 day% 1.5 weeks .75 days 1.5 days 1 hour Lead '(I;ime =
L 113 days




Value Stream Mapping

Steering

Learning
toSee

Full
Projects /
Expedites

Business Analyst

Erica Switzer
Estimates
and
requirements

Project Manager

Erica Switzer

Changa Creative
ily S request Change
Daily Scrum

Mx3 meeting Request QA Control Forms Program Management

; s _ Dovelopment__

Dx3 Technical N Development
Develop Specification Daily Scrum Deployment
web assets meeting Meeting
Jira issues

RT tickets

Web Assets,

iness Systel
Support

Release Engineering

Deployment i
HIC [12 flows and Document schnical Operatio
SR | 5%
S-S A xe Wx2 Dsz RT tickets Change
Development Development Release Control
Ild and deplo itegration testing Build and deploy
EP service 8 weeks L/T | 2 days L/T | 1day L/T_| 8 hours
Cut project branch ——{ branches P/T_| 4 weeks P/T_| 4 hours P/T | 1 day P/T_| 7 hours -
HIC |5 H/C | 1 HIC |5 HIC |1 D Mx2
(LT 115 minutes | S/R [ 25% SR [10% SR [ 95% S/R | 2% PDx3 Dx2
BT |5 minutes Joe Harbaugh Joe Harbaugh Joe Harbaugh Fernando Gomez i Tested Deploy- EF | Merge project
H/IC |1 packages duction branch
S/R|0%
Chris Holmes. 5 days L/T_| 4 weeks L/T_| 9 hours L/T_| 30 minutes
P/T | 5 hours P/T | 2.5 weeks P/T_| 90 minutes P/T | 3.5 days P/T_| 8 hours P/T_| 30 minutes
Environments HIC |2 H/C [ 4 H/IC |3 H/C [ 4 H/IC |6 H/C |1
Documented S/IR | 10% SIR | 20% SIR | 66% SIR | 66% S/R | 66% S/R | 33%
test plans Raj Lee Raj Lee Frances Middleton Frances Middleton Allen Cannata Fernando Gomez
and cases L toptes | e — e ——— e — —
i QA Production
Build test plan Environments Environment Environment
L/T_| 5 day: L/T | 2 week:
P/T | 4 days P/T_| 8 days
H/IC |1 HIC |2
S/R | 10% S/R | 20% Pert
Raj Lee Raj Lee Reroviy erformance
'erformanc testing
6 days LT |1 week
90 minutes P/T_| 3 days
H/IC |3 H/C |1
S/R | 66% S/R | 66%
Frances Middleton Allen Cannata
I —— e ——
Performance
Environment
Process Time
4weeks 4 weeks 4 hours 1 day 7 hours 5 hours 2.5 weeks 90 minutes 3.5 days 8 hours =62 days
2 weeks I | 4 weeks I |1.5 daysI | I | 1 hours I 4.5 dayi 1.5 weeks .75 days 1.5 days 1 hour Lead Time =
L 113 days
S —




Value Stream Mapping

Custome

communication

r

SR = 100% LT = 284
Suresh Wu PT=7d
ars
M2 _ W Stephen / Xi
Release Program
regs. Management Release
? Schedule
m PT = Product Progral
H/C = Planning
SR =
Erica Smith L/T = 105d
P/T = 46d
PD H/C =15
S/R = 100%
M(2) EP » John Robert
[ Engineering
Planning i
Process Design
S
PRD LT = 450 £Cs PRD
. BT =18d Documentum
M H/C =23
= SIR=
Preliminary Bob Smith
Development
Release PRD
L/T = 45d Memos Gil
P/T=21d
HIC = 140 D MOP, SOP
SIR= "
Bob Smith QA Forum M@3) _ EP _
Ticket QA forum Engineering
checklist Release
—
L/T = 60d
P/T =1d
‘ H/C =1
QA Forum M _ EP(3) S/R =>5%
Ticket Victoria Doe
Tasks QA Test
L/T = 105d MOP
P/T =11d
HIC = 42 21D
SIR = Selective
Sam Young Promotion
LT = 90d
P/T = 15d
New Targets H/IC =5
S/IR =
Steve Young
-~ M _W@2) _ EP
u M(2) _ PD(3) _
Development . .
Commits Build Release
L/T = 75d — Promotion
P/T = 43d LT=1d
H/C =130 P/T =0.3d L/T = 60d
SIR = H/C=2 P/T =0.2d
Bob Smith S/R = 33%. H/C =1
John Doe S/R =>5%
Victoria Doe

Lockdown
control

ERR

Current state value stream map

EP(2) TS(2)

\
M@E) _ W(2)

Cloud Services

Release

—
L/T = 60d

P/T = 16d

H/C=3

S/IR=3%

Remedy
Ticket

README

w _ EP

Change Control

Reggie / Carlos

—
L/T = 42d

PIT =

MOP

Peter Lee

~—

Remedy
Ticket

L/T | Lead time
P/T | Process time
H/C | Head count
S/R | Scrap rate
D | Defects
EP | Extra processes
M | Motion
PD [ Partially done
TS | Task switching
W | Waiting

BRD

Technical Support
Product Management

PD

M@) . W

Server
Provisioning

L/T = 24d
P/T=4d
H/C=3
S/R = 50%
Jen Garza
Patch
Calendar

EP

Rollout

Schedule

Deploy Rele
v
Y/
Shared Z <] —
Drive Prod S
— H/C =
S/R = 2%
XML Lewis S./Peter Y.
] M W@ EP
Single
Image PD D@3 TS
Server

Server
Acceptance

LT =14d

P/T =1d
H/C =45
S/IR=15%

ann A. etc




Value Stream Mapping

Current state value stream map

Customer
communication

L/T |Lead time

S/R = 100% L/T = 28d P/T | Process time
Suresh Wu PT=7d H/C | Head count
HS/?;; S/R | Scrap rate
M2 _ W Stephen / Xi

derived Release Program D | Defects
regs. Management EP | Extra processes
— Sched -
- LT = chedue M | Motion
Estimates PRD BT = Product Progral

H/C = Planning PD | Partially done
SR = TS [ Task switching
Erica Smith L/T = 105d iti
B/T = 46d W [ Waiting
PD H/C =15 N
S/R = _100% Lockdown Technical Support
M.(.Z) E._P — John Robert control roduct Managemer
Engineering cerini
Planning i
Process Design
PRD L/T = 450 S’ "RD EP2) TS(2)
- PIT=18d Documentum \
M L EP H/SC/R:=23 o - o , ] MA(a) W(2) PD
Preliminary Bob Smith af _ = ERR Cloud Service
Development & 4 Release BRD M@) . W
Release 3 PRD 2 ERR TIT = 60d Server
L/T = 45d Memos o 7 — Provisioning
y P/T=21d - § A P/T =16d
—HIC = 140 : D MOP, SOP H/C=3 VT
S/R = ironment r A Fomad SR =3% P/T =4d
Bob Smith QA Forum ; M@3) _ EP _ﬁ::"éty Reggie / Carlos e =3
. Ticket QA forum X Engineering 4 ?2: Zggﬁ
‘ checklist Release / a W & e
L/T = 60d B ~ Calendar
[ 4 PIT=1d2% : g
. D R/ o Tl README Change Control EP
9 QA Forum M _ EP@3 S/R = 559 — Rollout Server
Ticket - Victoria Dodt. U"E;‘fd | schedue | Acceptance
) QA Test;v H/C = L/T=14d
- L S/R = PT=1d
% L/T = 105d MOP| | | Peter Lee HIC =4.5
PIT=11d P0G ; s . ERR SIR = 15%,
HIC=42 ° @) s 28 =
SIR= 4 Selective ] a1 sy 3
Sam Youn: Promotion ; MWz e o D
- : LT = 90d
) P/T = 15d : ; Remedy
New Targets H/IC =5 : Ticket
SIR =
Steve Young >

README
2 EP Deploy Rele:
Full MW@ M) _ PD() - — /V
Development . Build 3 Shared T = 904
commie - Drive Prod =
L/T = 75d — Promotion G =8
P/T = 43d LT=1d n— SR =2
H/C = 130 P/T=0.3d L/T = 60d _SR=2%
SR = H/IC =2 P/T =0.2d ewis S./Peter Y. e
Bob Smith S/R = 33% H/IC=1 — A M w2 Ep
John Doe S/R=>5% Single
Victoria Doe Image PD D(@3) Ts
Server




Timeline Analysis

Current state value stream map

Steering
Committee

Erica Switzer

Full
Projects /
Expedites

L/T | Lead time
P/T | Process time
H/C | Head count
S/R | Scrap rate

Business Analyst

- D | Defects
Estimates
and EP | Extra processes
requirements M [ Motion

PD | Partially done
TS | Task switching
W | Waiting

Project Manager

Erica Switzer

Change
request

Creative

Program Management

Daily Scrum
meeting

Request QA
build

Change
Control Forms

Technical
Specification

Dx3

Daily Scrum Deployment

Develop
meeting Meeting

web assets

Jira issues

RT tickets

iness Syste
Support

Web Assets, Deployment
P 141 flows and Document
SR | 5%
Bob McNuItx Wx2 RT tickets Change
Release Control
—

Build and deploy

EP service 8 weeks 8 hours
Cut project branch =—] branches 4 weeks P/T | 4 hours P/T | 1 day P/T | 7 hours s
HIC |5 HIC |1 HIC |5 HIC |1 ” e
[T 115 minutes | SIR | 25% SR | 10% S/R | 95% SIR [ 2% :
BT | 5 minutes Joe Harbauﬁh Joe Harbauah Joe Harbauﬁh Fernando Gomez EP Tested PD i EP >
H/IC |1 packages { - branch
SR | 0% .
Chris Holmes 4 weeks L/T | 6 days LT |1 week L/T_| 9 hours L/T | 30 minutes
5 hours P/T | 2.5 weeks P/T_| 3.5 days P/T_| 8 hours P/T_| 30 minutes
Environments 2 H/IC | 4 H/C [ 4 H/IC |6 H/IC | 1
Documented S/IR | 10% S/IR | 20% S/R | 66% SR | 66% SIR | 33%
test plans Raj Lee Raj Lee Frances Middleton [ Allen Cannata Fernando Gomez
and cases L toptes | S —— — L= e |
) QA ) Production
Environments Environment Environment
L/T_|5days L/T | 2 week
P/T | 4 days P/T_| 8 days
H/IC |1 HIC |2
S/R [ 10% S/R [ 20% !
Raj Lee Raj Lee Deploy to —_— erlorr_nance
erformanc testing
L/T | 6 days LT |1 week
P/T_| 90 minutes P/T_| 3 days
H/IC |3 H/C |1
S/R | 66% S/R | 66%
Frances Middleton Allen Cannata
T T
Performance
Environment
Process Time
4 weeks 4 weeks 4 hours 1 day 7 hours 5 hours 2.5 weeks 90 minutes 3.5 days 8 hours = 62 days

2 weeks I | 4 weeks I |1.5 daysI | I | 1 hours I 4.5 day% 1.5 weeks .75 days 1.5 days 1 hour Lead '(I;ime =
L 113 days




Waste Analysis

Current state value stream map

Steering
Committee

Erica Switzer

L/T | Lead time
P/T | Process time
H/C | Head count
S/R | Scrap rate

Full
Projects /
Expedites

Business Analyst

- D | Defects
Estimates
and EP | Extra processes
requirements M [ Motion

PD | Partially done
TS | Task switching
W | Waiting

Project Manager

Erica Switzer

Change Creative

request

Program Management

Daily Scrum
meeting

Change
Control Forms

Request QA
build

ical
ication

Dx3

Daily Scrum Deployment

Develop
meeting Meeting

web assets

iness Syste
Support

Jira issue:

RT tickets

4
Web Assets, ; 5 z Deployment
TR flpws and Document Stan Walters
SR [5% .
Bob McNuItx Wx2 RT tickets Change
Release Control
R

Build and deploy

EP service 8 weeks 8 hours
Cut project branch =—] branches 4 weeks P/T | 4 hours P/T | 1 day P/T | 7 hours s
HIC |5 HIC |1 HIC |5 HIC |1 ” e
[T 115 minutes | SIR | 25% SR | 10% S/R | 95% SIR [ 2% :
BT | 5 minutes Joe Harbauﬁh Joe Harbauah Joe Harbauﬁh Fernando Gomez EP Tested PD i EP >
H/IC |1 packages { - branch
SR | 0% .
Chris Holmes 4 weeks L/T | 6 days LT |1 week L/T_| 9 hours L/T | 30 minutes
5 hours P/T | 2.5 weeks P/T_| 3.5 days P/T_| 8 hours P/T_| 30 minutes
Environments 2 H/IC | 4 H/C [ 4 H/IC |6 H/IC | 1
Documented S/IR | 10% S/IR | 20% S/R | 66% SR | 66% SIR | 33%
test plans Raj Lee Raj Lee Frances Middleton [ Allen Cannata Fernando Gomez
and cases L toptes | S —— — L= e |
) QA ) Production
Environments Environment Environment
L/T_|5days L/T | 2 week
P/T | 4 days P/T_| 8 days
H/IC |1 HIC |2
S/R [ 10% S/R [ 20% !
Raj Lee Raj Lee Deploy to —_— erlorr_nance
erformanc testing
L/T | 6 days LT |1 week
P/T_| 90 minutes P/T_| 3 days
H/IC |3 H/C |1
S/R | 66% S/R | 66%
Frances Middleton Allen Cannata
T T
Performance
Environment
Process Time
4 weeks 4 weeks 4 hours 1 day 7 hours 5 hours 2.5 weeks 90 minutes 3.5 days 8 hours = 62 days

2 weeks I | 4 weeks I |1.5 daysI | I | 1 hours I 4.5 day% 1.5 weeks .75 days 1.5 days 1 hour Lead '(I;ime =
L 113 days




Waste Analysis

Waste icon Description Examples
Partially Done Any work item that is produced in the solution delivery process that has not been « Documentation waiting for
Work completed. This includes both partially done work within a process (ex: not review
reviewed requirements document) and work sitting in an inventory (ex: code waiting | | Untested code
for QA). Partially done work becomes obsolete and loses value as time progresses.
« Undeployed code
Extra ) Any additional work that is being performed in a process that does not add value to | « Unused Documentation
&, 42 i : . 2
Processes 3@&?{ the client. This may be documentation that is not used by the downstream . Unnecessary
}ﬁﬁf‘i processes or reviews/approvals that do not add any value to the output. Extra reviews/approvals
processes add effort and time to the value stream.
Extra Features | Gold plating or other additional features built into the scolution that is not needed by | « Features driven by
b 4’**’;;_, the business. This may be features driven by technology or when the business technology only
gg;w! | asks for everything but the kitchen sink. Extra features adds complexity and effort . Features not likely to be used
to test and manage the functionality.
Task Switching | . ade When people are assigned to multiple projects/streams requiring them to multi- « People on multiple projects
4 18 = | task. The time required for context switching and managing dependencies between | | Running concurrent streams
YN | work adds additional effort and time to the value stream. with high dependencies
Waiting A Any delays between work requiring resources to wait until they can complete the « Delays from
52) @q“‘ current work item. Delays increase cycle times and prevent the client from realizing review/approvals
g b the value from the product as soon as possible.
Motion Amount of effort to move information/materials from one process to another. If « Distributed teams
b 4 L people have to frequently communicate but are not co-located this is a form of « Hand-offs
1;%35 motion waste. As well, hand-offs are another form as they require effort to move
' | from one group to ancther and may require additional communication to resolve
ambiguities
Defects i Incorrect, missing and/or unclear information/materials/products create waste as « Build defects
3;‘%;5 effort is needed to (e'sol\'/e these issues. The amount of time from when the defect | Requirement defects
‘ is created to when it's discovered increases impact of it to the value stream.

P

(Mary Poppendick’s “Seven Wastes of Software Development”)



What should we be looking for?



What should we be looking for?
e Long lead times (vs processing time)



What should we be looking for?

e Long lead times (vs processing time)
e Request and approval queues



What should we be looking for?

e Long lead times (vs processing time)
e Request and approval queues
e Large batch sizes



What should we be looking for?

e Long lead times (vs processing time)
e Request and approval queues

e Large batch sizes

¢ Human to human information transfer



What should we be looking for?

e Long lead times (vs processing time)
e Request and approval queues

e Large batch sizes

¢ Human to human information transfer
e Scrap / Rework / “Backwash”



What should we be looking for?

e Long lead times (vs processing time)
e Request and approval queues

e Large batch sizes

¢ Human to human information transfer
e Scrap / Rework / “Backwash”

* Process or tooling inconsistency



What should we be looking for?

e Long lead times (vs processing time)
e Request and approval queues

e Large batch sizes

¢ Human to human information transfer
e Scrap / Rework / “Backwash”

* Process or tooling inconsistency

¢ Manual deployment / configuration



What should we be looking for?

e Long lead times (vs processing time)

e Request and approval queues

e Large batch sizes

¢ Human to human information transfer

e Scrap / Rework / “Backwash”

* Process or tooling inconsistency

¢ Manual deployment / configuration

e Reliance on manual testing / verification



What should we be looking for?

e Long lead times (vs processing time)

e Request and approval queues

e Large batch sizes

¢ Human to human information transfer

e Scrap / Rework / “Backwash”

* Process or tooling inconsistency

¢ Manual deployment / configuration

e Reliance on manual testing / verification
e Injecting requirements late in the process



What should we be looking for?

e Long lead times (vs processing time)

e Request and approval queues

e Large batch sizes

¢ Human to human information transfer

e Scrap / Rework / “Backwash”

* Process or tooling inconsistency

¢ Manual deployment / configuration

e Reliance on manual testing / verification
e Injecting requirements late in the process
e Fixing in place (vs rebuilding)



What should we be looking for?

e Long lead times (vs processing time)

e Request and approval queues

e Large batch sizes

¢ Human to human information transfer

e Scrap / Rework / “Backwash”

* Process or tooling inconsistency

¢ Manual deployment / configuration

e Reliance on manual testing / verification
e Injecting requirements late in the process
e Fixing in place (vs rebuilding)

e “Snowflake” servers and environments



What should we be looking for?

e Long lead times (vs processing time)

e Request and approval queues

e Large batch sizes

¢ Human to human information transfer

e Scrap / Rework / “Backwash”

* Process or tooling inconsistency

¢ Manual deployment / configuration

e Reliance on manual testing / verification
e Injecting requirements late in the process
e Fixing in place (vs rebuilding)

e “Snowflake” servers and environments
e Manual dependency management



What should we be looking for?

e Long lead times (vs processing time)

e Request and approval queues

e Large batch sizes

¢ Human to human information transfer

e Scrap / Rework / “Backwash”

* Process or tooling inconsistency

¢ Manual deployment / configuration

e Reliance on manual testing / verification
e Injecting requirements late in the process
e Fixing in place (vs rebuilding)

e “Snowflake” servers and environments

e Manual dependency management

e Ad-hoc or unstructured artifact management



Building organizational alignment

1. Socialize the concepts and vocabulary
2. Visualize the system

a. value stream mapping

b. timeline analysis

c. waste analysis



Building organizational alignment

1. Socialize the concepts and vocabulary
2. Visualize the system

a. value stream mapping

b. timeline analysis

c. waste analysis

3. Pick metrics that matter



Are you getting better as an organization?



Are you getting better as an organization?

e Cycle Time



Are you getting better as an organization?

e Cycle Time
e MTTD (Mean Time To Detect)



Are you getting better as an organization?

e Cycle Time
e MTTD (Mean Time To Detect)
e MTTR (Mean Time to Repair)



Are you getting better as an organization?

e Cycle Time
e MTTD (Mean Time To Detect)
e MTTR (Mean Time to Repair)

e Quality at the Source (Scrap)



Metrics chains tie the individual to the goal

What matters to the business

Capability that influences
what matters to the business

Activity over which an individual
can cause/influence outcomes




Building organizational alignment

1. Socialize the concepts and vocabulary
2. Visualize the system

a. value stream mapping

b. timeline analysis

c. waste analysis

3. Pick metrics that matter



Building organizational alignment

1. Socialize the concepts and vocabulary
2. Visualize the system

a. value stream mapping

b. timeline analysis

c. waste analysis

3. Pick metrics that matter

4. Identify projects / experiments against
baseline



Building organizational alignment

1. Socialize the concepts and vocabulary
2. Visualize the system

a. value stream mapping

b. timeline analysis

c. waste analysis

3. Pick metrics that matter

4. Identify projects / experiments against
baseline

5. Repeat steps 2 - 4
(continuous improvement program)



Start with a burst of energy

Agenda

DevOps Workshop

Kickoff
DevOps Goals Current State Future State / Future State /
Analysis Solution Design Solution Design
Key Concepts
Lunch Lunch Lunch Lunch
Case Study Current State Future State / Wrap-up
Discussion Analysis Solution Design

= Principles

= Analysis = Design




Building organizational alignment

1. Socialize the concepts and vocabulary
2. Visualize the system

a. value stream mapping

b. timeline analysis

c. waste analysis

3. Pick metrics that matter

4. Identify projects / experiments against
baseline

5. Repeat steps 2 - 4
(continuous improvement program)



Building organizational alignment

1. Socialize the concepts and vocabulary
2. Visualize the system
/1 See the _s_y_gjc_e_[r_l _______
a. value stream mapping < - A }
b. timeline analysis 77T
c. waste analysis

3. Pick metrics that matter

4. Identify projects / experiments against
baseline

5. Repeat steps 2 - 4
(continuous improvement program)



Building organizational alignment

1. Socialize the concepts and vocabulary
2. Visualize the system

1. See the system

a. value stream mapping < e -
‘‘‘‘‘‘‘‘ D —

b. timeline analymyz Focusonflow :.

c. waste analysis J T ——C e

3. Pick metrics that matter

4. Identify projects / experiments against
baseline

5. Repeat steps 2 - 4
(continuous improvement program)



Building organizational alignment

1. Socialize the concepts and vocabulary
2. Visualize the system

1. See the system

a. value stream mapping < s - |
~~~~~~~ D e O -

b. timeline analy$|45</‘2 Focusonflow .iw.

c. waste analysis P

3. Recognize feedback“ioops

3. Pick metrics that matter < ¢ —

4. Identify projects / experiments against
baseline

5. Repeat steps 2 - 4
(continuous improvement program)




Building organizational alignment

1. Socialize the concepts and vocabulary
2. Visualize the system

1. See the system

a. value stream mapping < s - |
~~~~~~~ 2 —— T

b. timeline analymya Focusonflow .

c. waste analysis O

3. Recognize feedback“ioops

3. Pick metrics that matter < ¢ —

—p OF°
4. Identify projects / experiments against
baseline « 4. !.ook for continuous

iImprovement opportunities

5. Repeatsteps2-4 ¢ qrmm >
(continuous improvement program)




Dev initiated DevOps Transformation

1. Take an “operations first” mindset
2. Build organizational alignment

3. Establish a new model for working with Ops



Example



What does Dev want?



What does Dev want?

e What they need to get their job done



What does Dev want?

e What they need to get their job done
e When they need it



What does Dev want?

e What they need to get their job done
e When they need it
e Fast feedback



What does Dev want?

e What they need to get their job done
e When they need it
e Fast feedback

e Dependable and predictable systems to
integrate with



What does Dev want?

e What they need to get their job done
e When they need it
e Fast feedback

e Dependable and predictable systems to
integrate with

e Limit extraneous information or tasks



What does Dev want?

e What they need to get their job done
e When they need it
e Fast feedback

e Dependable and predictable systems to
integrate with

e Limit extraneous information or tasks

* For everyone to get out of their way



What does Ops want?



What does Ops want?

e Enough time to do their work
e Deployment / provisioning
e Stability and performance engineering
e Hardening and security
e Paying down technical debt
e Compliance



What does Ops want?

e Enough time to do their work
e Deployment / provisioning
e Stability and performance engineering
e Hardening and security
e Paying down technical debt
e Compliance

e To have their requirements considered earlier
in the lifecycle



What does Ops want?

e Enough time to do their work
e Deployment / provisioning
e Stability and performance engineering
e Hardening and security
e Paying down technical debt
e Compliance

e To have their requirements considered earlier
in the lifecycle

e Confidence that changes are not going to
break the system or create a vulnerability



Dev and Ops interact through request queues



Dev and Ops interact through request queues

Leads to...
e Bottlenecks
* Increased lead times
e Reinforces organizational silos

e Misinterpretation or omissions

O

i OE




Replace request queues with self-service
Interfaces



Replace request queues with self-service
Interfaces

e Fully automate what used to be done by humans



Replace request queues with self-service
Interfaces

e Fully automate what used to be done by humans

e Put behind self-service interfaces for on-demand
consumption



Replace request queues with self-service
Interfaces

e Fully automate what used to be done by humans

e Put behind self-service interfaces for on-demand
consumption

e Benefits to Ops
e Less time spent “doing”, more time adding value
e Stop being the blocker



Replace request queues with self-service
Interfaces

e Fully automate what used to be done by humans

e Put behind self-service interfaces for on-demand
consumption

e Benefits to Ops
e Less time spent “doing”, more time adding value
e Stop being the blocker

e Benefits to rest of organization
e Decouple processes and avoid bottlenecks
e Each team can move at their own pace
e Cuts down on scrap and communication overhead
e Enables a pull-based lifecycle



Service provider mindset is already familiar

Ll

Customers




Extend concept to internal interfaces as well

Ll

Customers

PM / Analysts



Why Ops will initially say no

* Low confidence that new changes won’t
break things

e Governance / Compliance
e Auditing
e Access Control
e Accounting



...S0 lets show them what’s
possible step-by-step



Fully automated, specification driven lifecycle

Develop Commit Build Package Register Promote Install Configure

Code
J

Configuration

g = .
. . ) . Modular
: : Builder Packager Packages _IJ : Installer Automation

Data
—_—

Application

Tests

*,_——-‘"———.-

—

Source ™ Package -
Repository Repository

Environment

J

Build | —
Console

Operations || Resource |_| Infrastructure
Console Model Manager

Packages

Modular

Installer :
stalle Automation

Builder Packager

Specification

Images

Infrastructure

Tests

Build Deploy



Example

Develop Commit Build Package Register Promote Install

Code
J.‘

Configuration

J"

Builder Packager Installer

Packages
Data

Application

V .

Tests

!{dgi:tl

Source
Repository

Nexus

Operations
Console

Package
Repository

Environment
Packages

Builder Installer

Packager

Specification

L_ e

Images

Tests

M

Infrastructure

Build

Deploy

Configure
Shell
Modular wershell
Automatio
s
~
Puppet
|l Resource Infrastructure
Model Manager
amazon
webservices"
Modulgr ‘@ @
Automation CHEF DU/D?Et
Shell
Powershell




Example Governance / Compliance

Develop Commit Build Package Register Promote Install Configure

Code

Configuration im

"D
Builder Packager Packages II Installer

Shell
wershell

Application

Resource |_| Infrastructure

TEESE Manager
Repository Model g
amazon
@ web services"
e Environment . : . : :
3 ' . . Packages I . . " @ (
J .
O ' - : : Modular "iez o
E Builder Packager ; : Installer Automation | |PeiTT 3 >\!/
- Specification . . Puppet
i ' : 3 : images ™} 3 - Powershell
= Tests

J

Build Deploy



Mitigate quality and security risks

* Repeatedly “rehearse” all operations
from earliest possible point in lifecycle

e Everybody should be deploying and
testing with the same toolchain,
automation, and tests

e QA and InfoSec provide standards and
tooling that are used by Dev upfront



Build confidence from the start

PROD

PERF/STAGE

Confidence



Pull-based model to control promotions

Confidence




Don’t forget to give it a name

Operations as a Service (OaaS)

Ticketless IT



Don’t forget to give it a name

Operations as a Service (OaaS)

\ More web /

Ticketless IT cloud friendly

\ Bigger impact with

traditional enterprise IT



Dev initiated DevOps Transformation

1. Take an “operations first” mindset
2. Build organizational alignment

3. Establish a new model for working with Ops



Damon Edwards

. 1 @damonedwards

. dev2ops.org

"i i-'l -

DevOps Cafe

http://www.dtosolutions.com

http://www.simplifyops.com



mailto:damon@dtosolutions.com
mailto:damon@dtosolutions.com
http://www.dtosolutions.com
http://www.dtosolutions.com
http://www.dtosolutions.com
http://www.dtosolutions.com

Con

Please evaluate
my talk via the
mobile app!

CONFERENCE



