
What’s Beyond Virtualization?
Derek Collison - @derekcollison

Apcera Inc.
QCon London - March 7, 2014

What does the future of
Enterprise IT look like?

What does it look like
today?

It Depends!

Could be very old school - Just physical machines!

Could be virtualized: CPU/MEM, Storage and Network

Could be IaaS or IaaS++

Could be IaaS + PaaS

Could be off-premise and in the Cloud

Why do we care?

What do these things
really buy us?

They remove
undifferentiated heavy lifting!

They speed up
the slow and mundane

Transparent value-add!

What about PaaS?

What about PaaS?
Tries to speed up deployment

Very opinionated, still is..

Is only a piece of the larger puzzle

Carrying costs in the delivery pipeline

Pipeline is a biz requirement thru value delivered

BUT PaaS as a standalone technology is not enough..

So..

What do we want?

What do we want..

Self Service

Faster iterative development and deployments

Fault Tolerance, High Availability

Higher and guaranteed SLAs

Composeable Systems - legos

Software Defined Everything!

But..

What do we really want?

What do we really want?

Meta-data driven description of my system

Extreme Agility

Transparent Compliance

Fluid and Abstracted Infrastructure and Services

Multiple delivery models in a single system

What do we want really?

Meta-data driven description of my system

Extreme Agility

Transparent Compliance

Fluid and Abstracted Infrastructure and Services

Multiple delivery models in a single system

Meta-Data Driven
My app A needs to talk to B and C

I need 4 instances of A, 2 of B and 3 of C

It needs X memory and Y CPU

It needs NNN storage

It requires I/O SLAs for talking to B and C

It needs to be available via a URL for trusted identities

It needs to run on-premise and co-located near B

Is this
Autonomic Computing?

How would we do this?

How would we even start?

Getting Started - App A

What does App A need?

Where will App A be run?

How will App A find B and C?

How do others find my App A?

What happens on a failures?

Getting Started - App A

What does App A need? - Packaging and Dependencies

Where will App A be run? - Provision and Schedule

How will App A find B and C? - Addressing/Discovery

How do others find my App A? - External Mapping

What happens on a failures? - Health Monitoring

Packaging and Dependency
What does the job need to run?

What runtimes, OS, libraries?

What tools can I use for consistency, compliance, audit?

SCCS and Chef / Puppet

AMIs or VMDKs

Docker Images

Packaging and Dependency
Challenges

Do these change when I change from Dev to
Production?

What runtimes, OS, libraries then?

Who defines what these are?

Are the existing tools and best practices still
sufficient?

Provision and Schedule
How fast can I provision?

Can my workload run anywhere and be compliant?

How do network perimeter security models effect placement?

What is my unit or work? VM, App, Image?

Can the system automatically handle compliance and policy?

Can compliance and deployment be handled independently?

What new tools exist? Mesos, Fleet?

Addressing and Discovery
Is DNS sufficient?

Do we need to change our applications?

When things get moved, how does the system react?

Is load balancing handled or is this a manual process?

What happens when we scale up or down?

How do others find us?

Monitoring and Management
What happens when something fails?

Is this a manual process?

Who determines failure? Can we trust the system?

What if they are sick, not dead? Latency vs Chaos

Do we know if the change even helped?

Pluggable Health

SO..
How do we get here?

Is it a Bolt-On Solution?

Or is it Bolt-In?

Bolt-On got us into this
mess in the first place!

What we need is a
Platform OS!

Programmable, pluggable
and composeable..

From the inside out..

The OS for the datacenter

The OS for the datacenter
Multiple Datacenters

Secure, Trusted, and Hybrid

Multi-Datacenter OS
Treat all resources as a common pool

Handle all networking access, addressing and discovery in
realtime, and at scale

Be aware of ontologies and their communication semantics

Be security and policy aware

Be purposely built to accept and promote rapid change

Provide policy compliant resource isolation, connectivity and SLAs

Multi-Datacenter OS

Virtualization

SDN - Software-Defined Networking

Management and Resource Pooling

Intelligent and Compliant Job Scheduling

Intelligent canarying, A/B rollouts

Multi-Datacenter OS

Virtualization

SDN - Software-Defined Networking

Management and Resource Pooling

Intelligent and Compliant Job Scheduling

Intelligent canarying, A/B rollouts

Virtualization?

What about speed and weight?

Google chargeback diversion

What about containers, e.g. Docker?

Is there a container equivalent for .NET?

Micro-task Virtualization?

Multi-Datacenter OS

Virtualization

SDN - Software-Defined Networking

Management and Resource Pooling

Intelligent and Compliant Job Scheduling

Intelligent canarying, A/B rollouts

SDN?
Solve network perimeter security?

Does it involve application level changes?

What about layer 7 semantics?

How many INSERTS per second from all of App A?

Can I disallow DROP and DELETE calls between 1a-3a?

Can the network be made compliant and transparent?

It just works, e.g. mobile

Multi-Datacenter OS

Virtualization

SDN - Software-Defined Networking

Management and Resource Pooling

Intelligent and Compliant Job Scheduling

Intelligent canarying, A/B rollouts

intelligent and Compliant
Job Scheduling

Pick the best place to run for a given job and policy

How does a system rebalance, utilize new resources?

Centralized or Distributed Algorithms?

How does policy effect decision making? E.g Geo

Multi-Datacenter OS

Virtualization

SDN - Software-Defined Networking

Management and Resource Pooling

Intelligent and Compliant Job Scheduling

Intelligent canarying, A/B rollouts

Intelligent Canarying

Want to roll out a new version of App A

Do we know what App A - v2 success looks like?

How do we do roll in and roll back (if needed)?

How do we avoid our fingers on the keyboard?

What is needed for this process to be automated?

Intelligent Canarying
What data is needed to say if it is ok?

resource utilizations - CPU, Mem, Storage

communication patterns - cascading effects

temporal awareness

All data feeds into anomaly detection services

Utilizes unsupervised deep machine learning

Summary

Summary
Intelligent, holistic platform technologies - Pluggable and Composeable

Transparent value add to jobs/workloads - No code changes!

Packaging and Dependency Management - Policy aware

Job Scheduling and Provisioning - Also policy aware

Addressing, Discovery, Networking - Policy again, theme developing

Monitoring and Management

Lifecycle Management and Intelligent Canarying

Some Resources

Docker - https://www.docker.io/

Mesos - http://mesos.apache.org/

CoreOS - https://coreos.com/

Fleet, Etcd - https://coreos.com/using-coreos/etcd/

Continuum - http://apcera.com/continuum/

http://apcera.com/continuum/

Thank You

