GARBAGE COLLECTION:

T ==
:
L4 . - O -y

@EvaAndreasson, @Cloudera

AGENDA

* Garbage Collection (101)
» The Good
The Bad
* The Ugly
T

ne Challenge!

GARBAGE COLLECTION

N
G
2
\I

"When you have to shoot, shoot - don't talk!"

WHAT IS GARBAGE COLLECTION (GC)?

What is a Java Virtual Machine (JVM)?
Runtime code compilation

Dynamic memory management

What is dynamic memory management?
Does not require explicit memory allocation (when programming)

Frees up memory no longer referenced

JAVA HEAP - SPOTLIGHT

The mythical (?) Java heap
o -Xmx, -Xms

» Top: RES/RSS --- total memory footprint

Full = a thread fails to allocate a new object

REFERENCE COUNTING VS. TRACING

Reference Counting
Plus a counter for each reference to an object
Subtract for each removed reference to an object
* When 0, reclaim the heap space occupied by that object
Simple to reclaim
Hard to maintain counters

Difficult (costly) to handle cyclic structures

REFERENCE COUNTING VS. TRACING

Tracing
Identify roots (thread stacks, ..., etc)
Trace all references from those objects, recursively
» Anything not found is garbage
Simple to maintain, handles cyclic structures

Needs to trace all live objects before reclaiming memory

SIDE NOTE: WHAT IS FRAGMENTATION?

FULL
HEAP

POST
GC

K

FRAGMENTS

COPYING VS. MARK'N'SWEEP

« Copying
» Split the Java Heap into sections
* Allocate only in the one section, until full
 Stop the world
 Trace all reachable objects in the section and move (copy) them to another section
» Reclaim the original section as “free”
* Prevents fragmentation
» Wasteful in space

» Stops the world

COPYING VS. MARK'N'SWEEP

* Mark’n’'sweep
 Allocate objects in the entire heap space, until full
» Trace and mark live objects (no moving)
« When all live objects are marked, sweep all non-marked areas (build free lists)
 Allocation can now happen at the address spaces of the free lists
» Allows entire heap for allocation
« Suffers from fragmentation

» Qver time free list chunks too small to fit new objects

10

PARALLEL VS. CONCURRENT

« Parallel

Stop the world

* Allow all available threads to do GC work

 Allow allocation once the entire GC cycle is complete
« Concurrent

* Allow some of the available threads to do as much GC work in the background as
possible, without impacting running applications too much

* lterative marking, track areas where running applications have made
modifications and re-mark

* Needs to start in time...

11

GENERATIONAL

» Generational (-Xns)
* Most objects die young
« Define a space (could be distributed) on the heap for allocation
» The rest of the heap is considered “old space” or “old generation”

* As objects “survive” garbage collection in the young space (a.k.a. nursery), promote
them to the old space

» Reduces the speed of fragmentation of the heap

« Can use different algorithm than old space: copying, parallel and copying...

12

COMPACTING

« Compaction
» The operation of moving objects on the heap together
» Opens up larger consecutive spaces of free memory
« Mitigates fragmentation

« Compaction area size

* Incremental

* Intelligent

» Parallel mark’n’'sweep and copying implementations usually do this during their normal
stop the world phase

« Concurrent mark’n’sweep needs to handle this somehow, eventually...

13

14

GARBAGE IS GOOD!

« Wait...what now?!?

15

THE GOOD

« Garbage means you are using Java the way it was intended — truly object oriented!!
« Without GC, the world would have looked differently

 Java helped software (and hardware) innovation

* Programming became “mainstream” (no offence...)

» Coding could be done faster

* More jobs were created

* More products and businesses popped up
* If tuned “right”...

16

17

THE DESERT OF TUNING

* Endless tuning and re-tuning

Rant-warning!

« Ok for some application profiles

Time window applications
Client applications
Specially architected applications (new-objects only)

Applications not sensitive to latency

18

A DESERT SURVIVAL KIT

» Chose the right GC algorithm for your application

» Understand your application allocation rate (in production) and allocate enough heap

« Measure the right thing!!
* Test != Production
* Not average or std dev — latency is not a standard distribution!

» Check out: Gil Tene’s jHiccup tool (and his talk) — a great new approach!

19

20

RECOGNIZE THIS?

 Initially everything is fine, GCs are happening without much impact

« Over time application seems to freeze up on occasion, or starts responding slower and
slower

« Soon, the entire application hangs, affecting other servers to start firing up
« Eventually the JVM gives up and “crashes”

« GC logs show back-to-back GCs and in the end some sort of Out Of Memory, Allocation,
or Promotion Error

21

WHAT REALLY HAPPENS

« When allocation fails, GC is triggered
» GCis doing its job, but no memory opens up (everything is live)
» Back-to-back GCs, still no new memory => OOME..

« OOME indicates not enough heap for your allocation rate

22

WHY NOT CONFIGURE A LARGER HEAP?

23

“GC PAUSES”

REMEMBER FRAGMENTATION?

T =

...IF multiple GCs later...

e

FRAGMENTS

FULL
HEAP

POST
x GCs

25

REMEMBER COMPACTION?

* Most GC implementations do not handle compaction well
« Moving objects is costly — stop the world is easy
* Generational added

* Tuning options and heuristics added

« Only one JVM that | know of that does compaction concurrently today (Zing)

26

PREPARE FOR THE REAL VILLAIN...

"There are two kinds of people in the world my friend, those with a rope around their
neck and the people that have the job of doing the cutting!"

27

STOP THE WORLD
OPERATIONS!!

STOP THE WORLD OPERATIONS

Prevents efficient memory utilization
Creates complex JVM deployments

Sends you out in the tuning desert...

.
y.; .
o .
335,

X

O = L
Y

fi

» A . - " T
E G
4 \ r
3 vy 2
Yo . 2 1:_\‘-0_
“‘ :"il\ : .~"‘) ;:‘
iy YRR
2V EAV e
‘o . p =

L
rATD ™

#
i
H

29

SUMMARY

» Garbage is
* The need to tune is
» Stop the world operations are

30

| CHALLENGE THEE

“You see in this world, there’s two kinds of people my friend...
...those with loaded guns and those who dig...you dig!”

31

JOIN THE FUTURE OF JAVA!

* Open JDK is a great opportunity for innovation - join the community!
« Have all GC algorithms been invented yet?
* How do we enable a better world of self-tuning, adaptive JVMs?
 Relieve the admin of the pain of the tuning!
* How about fixing the core problem?
* Implement concurrent compaction

» Be creative around allocation / dynamic allocation rates!

KV

33

Q&A

@EvaAndreasson

34

