
GARBAGE COLLECTION:

@EvaAndreasson, @Cloudera

AGENDA

2

• Garbage Collection (101)

• The Good

• The Bad

• The Ugly

• The Challenge!

GARBAGE COLLECTION

3

"When you have to shoot, shoot - don't talk!"

WHAT IS GARBAGE COLLECTION (GC)?

4

• What is a Java Virtual Machine (JVM)?

• Runtime code compilation

• Dynamic memory management

• What is dynamic memory management?

• Does not require explicit memory allocation (when programming)

• Frees up memory no longer referenced

JAVA HEAP - SPOTLIGHT

5

• The mythical (?) Java heap

• -Xmx, -Xms

• Top: RES / RSS --- total memory footprint

• Full = a thread fails to allocate a new object

 Java Heap: Where all Java Objects get allocated

JVM Internal

Memory:

• Code cache

• VM Threads

• VM & GC Structs

REFERENCE COUNTING VS. TRACING

6

• Reference Counting

• Plus a counter for each reference to an object

• Subtract for each removed reference to an object

• When 0, reclaim the heap space occupied by that object

• Simple to reclaim

• Hard to maintain counters

• Difficult (costly) to handle cyclic structures

REFERENCE COUNTING VS. TRACING

7

• Tracing

• Identify roots (thread stacks, …, etc)

• Trace all references from those objects, recursively

• Anything not found is garbage

• Simple to maintain, handles cyclic structures

• Needs to trace all live objects before reclaiming memory

SIDE NOTE: WHAT IS FRAGMENTATION?

8

New

Object

FULL

HEAP

POST

GC

FRAGMENTS

New

Object

COPYING VS. MARK’N’SWEEP

9

• Copying

• Split the Java Heap into sections

• Allocate only in the one section, until full

• Stop the world

• Trace all reachable objects in the section and move (copy) them to another section

• Reclaim the original section as “free”

• Prevents fragmentation

• Wasteful in space

• Stops the world

COPYING VS. MARK’N’SWEEP

10

• Mark’n’sweep

• Allocate objects in the entire heap space, until full

• Trace and mark live objects (no moving)

• When all live objects are marked, sweep all non-marked areas (build free lists)

• Allocation can now happen at the address spaces of the free lists

• Allows entire heap for allocation

• Suffers from fragmentation

• Over time free list chunks too small to fit new objects

PARALLEL VS. CONCURRENT

11

• Parallel

• Stop the world

• Allow all available threads to do GC work

• Allow allocation once the entire GC cycle is complete

• Concurrent

• Allow some of the available threads to do as much GC work in the background as

possible, without impacting running applications too much

• Iterative marking, track areas where running applications have made

modifications and re-mark

• Needs to start in time…

GENERATIONAL

12

• Generational (-Xns)

• Most objects die young

• Define a space (could be distributed) on the heap for allocation

• The rest of the heap is considered “old space” or “old generation”

• As objects “survive” garbage collection in the young space (a.k.a. nursery), promote

them to the old space

• Reduces the speed of fragmentation of the heap

• Can use different algorithm than old space: copying, parallel and copying…

COMPACTING

13

• Compaction

• The operation of moving objects on the heap together

• Opens up larger consecutive spaces of free memory

• Mitigates fragmentation

• Compaction area size

• Incremental

• Intelligent

• Parallel mark’n’sweep and copying implementations usually do this during their normal
stop the world phase

• Concurrent mark’n’sweep needs to handle this somehow, eventually…

14

GARBAGE IS GOOD!

15

• Wait…what now?!?

THE GOOD

16

• Garbage means you are using Java the way it was intended – truly object oriented!!

• Without GC, the world would have looked differently

• Java helped software (and hardware) innovation

• Programming became “mainstream” (no offence…)

• Coding could be done faster

• More jobs were created

• More products and businesses popped up

• If tuned “right”…

17

THE DESERT OF TUNING

18

• Endless tuning and re-tuning

• Rant-warning!

• Ok for some application profiles

• Time window applications

• Client applications

• Specially architected applications (new-objects only)

• Applications not sensitive to latency

A DESERT SURVIVAL KIT

19

• Chose the right GC algorithm for your application

• Understand your application allocation rate (in production) and allocate enough heap

• Measure the right thing!!

• Test != Production

• Not average or std dev – latency is not a standard distribution!

• Check out: Gil Tene’s jHiccup tool (and his talk) – a great new approach!

20

RECOGNIZE THIS?

21

• Initially everything is fine, GCs are happening without much impact

• Over time application seems to freeze up on occasion, or starts responding slower and

slower

• Soon, the entire application hangs, affecting other servers to start firing up

• Eventually the JVM gives up and “crashes”

• GC logs show back-to-back GCs and in the end some sort of Out Of Memory, Allocation,

or Promotion Error

WHAT REALLY HAPPENS

22

• When allocation fails, GC is triggered

• GC is doing its job, but no memory opens up (everything is live)

• Back-to-back GCs, still no new memory => OOME..

• OOME indicates not enough heap for your allocation rate

WHY NOT CONFIGURE A LARGER HEAP?

23

“GC PAUSES”

24

REMEMBER FRAGMENTATION?

25

New

Object FULL

HEAP

POST

x GCs

FRAGMENTS

New

Object

…IF multiple GCs later…

REMEMBER COMPACTION?

26

• Most GC implementations do not handle compaction well

• Moving objects is costly – stop the world is easy

• Generational added

• Tuning options and heuristics added

• Only one JVM that I know of that does compaction concurrently today (Zing)

PREPARE FOR THE REAL VILLAIN…

27

"There are two kinds of people in the world my friend, those with a rope around their

neck and the people that have the job of doing the cutting!"

STOP THE WORLD

OPERATIONS!!!

28

STOP THE WORLD OPERATIONS

29

• Prevents efficient memory utilization

• Creates complex JVM deployments

• Sends you out in the tuning desert…

SUMMARY

30

• Garbage is GOOD

• The need to tune is BAD

• Stop the world operations are UGLY

I CHALLENGE THEE

31

“You see in this world, there’s two kinds of people my friend…

…those with loaded guns and those who dig…you dig!”

JOIN THE FUTURE OF JAVA!

32

• Open JDK is a great opportunity for innovation - join the community!

• Have all GC algorithms been invented yet?

• How do we enable a better world of self-tuning, adaptive JVMs?

• Relieve the admin of the pain of the tuning!

• How about fixing the core problem?

• Implement concurrent compaction

• Be creative around allocation / dynamic allocation rates!

33

Q&A

34

@EvaAndreasson

