

An Unseen Interface
Creating Speech-driven UI For Your App That Makes Users Happy

by Halle Winkler, @politepix http://www.politepix.com

:D

http://www.politepix.com

What is a speech-driven UI?

A speech-driven UI uses either
speech recognition as an input
method, speech synthesis as
an information source for the

user, or both together.

...but it can also be multi-modal.

How does speech
recognition work?

1. An acoustic model
2. A lexicon
3. A language model (probability) or grammar (ruleset for states)
4. A decoder

The elements of speech recognition are:

What kind of apps benefit
from speech UIs?

Tasks in which free-form dictation is useful
Tasks which relate specifically to language

Large Vocabulary Tasks: server, built-in vocabulary
(UITextView, Android.speech, Nuance, AT&T, iSpeech)

Command and control tasks: offline, you generally define
vocabulary (OpenEars or other CMU Sphinx or Julius
implementations, some Android.speech devices and OSes)

Interfaces where the user is looking somewhere else
Interfaces where speech provides a new input or output
Interfaces that are more fun with speech
Interfaces where it’s easier to speak than type
Interfaces where it’s easier to listen than read
Interfaces where a heavy obstacle is removed

Why offline?
The interface is always available to your user

Speed is as fast or faster as a network API – and it's quantifiable!

Interface design and implementation is simpler and more
predictable without an asynchronous network dependency

The user is not giving away any of their data

What are the dimensions on which a
visual UI is rendered?

What are the dimensions on which a speech UI is rendered?
A speech UI is rendered on the dimension of time.

People value their time exquisitely.

How is a speech UI
different from a

visual UI?

Accents
Lack of shared vocabulary/Dialect

Noise
Distractions

Interruptions
Hearing difficulties

Distance
Language errors

!
Human speech interactions have frequent comprehension faults

Emotional intelligence makes us incredibly fault-tolerant

Do people understand each other
perfectly all the time?

Why not?

Automated speech
recognition is subject to all
the same issues as human

speech recognition, but
without the emotional

intelligence

We have to stack
the deck in our
(users’) favor.

Short is good.
Don't bite off more than you can chew – small (read "fast") steps

forward means small (read "fast") steps backwards
!

Use keyword detection to launch events
!

Switch between small vocabularies that each relate to one domain
This results in accuracy, speed, and a large vocabulary!

Short is bad.
Phonemes are the smallest unit of speech

Words with few of them have a lot of rhymes
Contextless rhyming is our enemy

Medium-sized, crunchy granola words are our friends

My app, my rules
Some apps need to recognize words
or phrases in ways that can be
expressed by rules.

Or be flexible
Some apps need to do probability-based detection

There are probability-based language models for
expressing this such as ARPA models

Out of vocabulary
Your app also has to behave well when

people aren't speaking to it!

Mic distance and
vocabulary

The more distance, the less vocabulary

Test, test, test.
And obtain appropriate test material.

Case study 1: Recipe App
A natural implementation of offline speech recognition

What are our interface
considerations?

• What are we buying with our time? Hands-free operation, moving locus
• Hands-free doesn't mean eyes-free! We can provide visual info
• Operational distance is pretty far
• Instead of NLP, offline grammar
• Secret weapon: we know all the words in a recipe in advance
• Fault tolerance: one level of complexity, don't confirm; return!
• Challenges: noise, moving locus, reflection, competing speech

!

Case study 2: Marco Polo
A dialog management tag game: one user checks in

a single location and the other user receives
volume-based speech feedback about their

proximity to the target when they say “Marco”

UX Considerations
• What are we buying with our time: play!
• For a single word, language model is fast and sufficient
• Acoustic environment and OOV semi-important
• This is a single-mode interface – an actual dialog

manager
• Extra development time should be put into increasing

voice dynamic range

Case study 3:
TalkCheater

An app to whisper sweet presentation notes in your ear

UX Considerations
• What are we buying? Eye contact, moving locus,

enhanced human capabilities
• Is this a speech recognition app?
• Does this have a visual or a touch interface?
• The body is the interface
• Fault tolerance, always important but most

important in a high-value scenario
• Volume
• Speaking speed of synthesized speech

Talk to me @politepix
and the OpenEars

forums. I will tell you
all the things.

