
"Do not block threads!"
a blessing in disguise or a curse?

@sadache
prismic.io co-founder, Play framework co-creator

Modern Applications

• Spend a considerable time talking to internet

• Internet means latency

• How does your runtime integrate this latency?

A Typical Request

App

latency

Service

We should not waste scarce resources
while waiting for work to be done on other machines

• Memory, CPU, …

• Threads/processes?

• lightweight (millions on a single machines)

• heavyweight? …

JVM and co

• Threads are scarce resources (or are they?)

• We should not hold to threads while doing IO (or
internet call)

• “Do not block threads!”

Copy that! what CAN I do?

Do not block threads!
• Then what should I do?

• Non blocking IO and Callbacks

• ws.get(url, { result => 
 println(result) 
})

• What happens if I want to do another call after?

• Callback hell!

Futures!
(Tasks, Promises, …)

• Future[T] represents a result of type T that we are
eventually going to get (at the completion of the
Future)

• Doesn’t block the thread

• But how can I get the T inside?

• // blocking the current thread until completion of the future? 
Result.await(future)

Examples of Future
composition

val eventuallyTweet: Future[String] = …

val et: Future[Tweet] = eventuallyTweet.map(t => praseTweet(t))

!

val tweets: Seq[Future[Tweet]] = …

val ts: Future[Seq[Tweet]] = Future.sequence(tweets)

Future composition

Future composition

Future composition

Some syntax sugar

// for comprehensions

for {

 t <- getTweet(id)

 k <- getKloutScore(t.user)

} yield (t,k)

Futures are elegant

• all, any, monads, applicatives, functors

• do all the scheduling and synchronisation behind
the scenes

Future is not satisfactory

Futures are not completely
satisfactory

• Manage execution on completion (who is
responsible of executing the code?)

• Additional logic complexity (adding one level of
indirection)

• Has a big impact on your program (refactorings)

• Ceremony, or am I doing the compiler/runtime work?

• Stacktrace gone!

Who runs this code?

val eventuallyTweet: Future[String] = …

val et: Future[Tweet] = eventuallyTweet.map(t => praseTweet(t))

Futures are not completely
satisfactory

• Manage execution on completion (who is
responsible of executing the code?)

• Additional logic complexity (adding one level of
indirection)

• Has a big impact on your program (refactorings)

• Ceremony, or am I doing the compiler/runtime work?

• Stacktrace gone!

Scala’s solution to execution
management (on completion)
• Execution Context

• def map[S](f: (T) ⇒ S)(implicit executor: ExecutionContext): Future[S]

• Just import the appropriate EC

• Very tough to answer the question (developers tend to
chose the default EC, can lead to contentions)

• import scala.concurrent.ExecutionContext.global

• Contention?

Futures are poor man’s
lightweight threads

• You might be stuck with them if you’re stuck with
heavyweight threads…

• Scala async!

• Why not an async for the whole program?

Futures are poor man’s
lightweight threads

val future = async {
!
 val f1 = async { ...; true }
!
 val f2 = async { ...; 42 }
!
 if (await(f1)) await(f2) else 0
!
}

Futures are poor man’s
lightweight threads

• You might be stuck with them if you’re stuck with
heavyweight threads…

• Scala async

• Why not an async for the whole program?

Inversion of control
(Reactive)

• Future but for multiple values (streams)

• Just give us a Function and we call you each time
there is something to do

• Mouse.onClick { event => println(event) }

Inversion of control
(Reactive)

• What about maintaining state across calls

• Composability and tools

• Iteratees, RX, Streams, Pipes, Conduits, … etc

Iteratees
<a quick introduction>

Iteratees

• What about maintaining state between calls

• Composability and tools

• Iteratees, RX, Streams, Pipes, Conduits, … etc

Iteratees

trait Step

case class Cont(f:E => Step) extends Step

case class Done extends Step

Iteratees

trait Step[E,R]

case class Cont[E,R](f:E => Step[E,R]) extends Step[E,R]

case class Done(r: R) extends Step[Nothing, R]

Iteratees
// A simple, manually written, Iteratee

val step = Cont[Int, Int](e => Done(e))

//feeding 1

step match {

 case Cont(callback) => callback(1)

 case Done(r) => // shouldn’t happen

}

Counting characters
// An Iteratee that counts characters

def charCounter(count:Int = 0): Step[String, Int] = Cont[String, Int]{

 case Chunk(e) => charCounter(count + e.length)

 case EOF => Done(count)

}

Iteratees
trait Input[E]

case class Chunk[E](e: E)

case object EOF extends Input[Nothing]

!

trait Step[E,R]

case class Cont[E,R](f:E => Step[E,R]) extends Step[E,R]

case class Done(r: R) extends Step[Nothing, R]

Counting characters

Counting characters
// An Iteratee that counts characters

def charCounter(count:Int = 0): Step[String, Int] = Cont[String, Int]{

 case Chunk(e) => step(count + e.length)

 case EOF => Done(count)

}

Same principle

• count, getChunks, println, sum, max, min, etc

• progressive stream fold (fancy fold)

• Iteratee is the reactive stream consumer

Enumerators

• Enumerator[E] is the source, it iteratively checks on the Step
state and feeds input of E if necessary (Cont state)

• Enumerators can generate, or retrieve, elements from anything

• Files, sockets, lists, queues, NIO

• Helper constructors to build different Enumerators

Enumeratees

• Adapters

• Apply to Iteratees and/or Enumerators to adapt their input

• Create new behaviour

• map, filter, buffer, drop, group, … etc

Iteratees
</ a quick introduction>

Iteratees
Inversion of controls: Enumerators chose when to call the Iteratees
continuation

They chose on which Thread to run continuation

What if an Iteratee (or Enumeratee) decided to do a network call?

Block the thread waiting for a response?

Counting characters
// An Iteratee that counts characters

def sumScores(count:Int = 0): Step[String, Int] = Cont[String, Int]{

 case Chunk(e) =>  
 
 val eventuallyScore: Future[Int] = webcalls.getScore(e) 
 
 step(count + Result.await(eventuallyScore)) // seriously???

 case EOF => Done(count)

}

Reactive all the way
// An Iteratee that counts characters

def sumScores(count:Int = 0): Step[String, Int] = Cont[String, Int]{

 case Chunk(e) =>  
 
 val eventuallyScore: Future[Int] = webcalls.getScore(e) 
 
 step(count + Result.await(eventuallyScore)) // seriously???

 case EOF => Done(count)

}

Iteratees

trait Step[E,R]

case class Cont[E,R](f:E => Step[E,R]) extends Step[E,R]

case class Done(r: R) extends Step[Nothing, R]

Iteratees

trait Step[E,R]

case class Cont[E,R](f:E => Future[Step[E,R]]) extends Step[E,R]

case class Done(r: R) extends Step[Nothing, R]

Reactive all the way
// An Iteratee that counts characters

def sumScores(count:Int = 0): Step[String, Int] = Cont[String, Int]{

 case Chunk(e) =>  
 
 val eventuallyScore: Future[Int] = webcalls.getScore(e) 
 
 eventuallyScore.map(s => step(count + s))

 case EOF => Future.successful(Done(count))

}

Seamless integration between
Futures and Iteratees

Seq[Future[E]] is an Enumerator[E]

Iteratees can integrate any Future returning call

Back-pressure for free

Suffer from the same
drawbacks of Futures

• Manage execution on completion (who is
responsible of executing the code?)

• Everything becomes a Future

• Stacktrace gone!

Elegant, help manage complexity of
asynchronous multiple messages

Composable

Builders and helpers

Modular

Recap
• Stuck with heavyweight threads?

• NIO and Callback hell

• Futures

• Composable Futures

• Iteratees and co

• Developer suffering from what the runtime/compiler couldn’t
provide

Asynchronous
Programming

is the price you pay, know what you’re paying for

The price is your
productivity

Asynchronous
Programming

calculate your cost effectiveness

Questions

