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Graphs at Shutl

• Graph databases are awesome

• We’ve seen lots of the talks about modelling

• But querying is important too

• So let’s talk about querying too!
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• Who has used graph databases before?

• Who has used Neo4j before?
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PAYPAL FOR AWESOME DELIVERY

Branded, super quick delivery that people trust, embedded in merchant websites
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Only cost effective means to deliver 10+ miles but slow and unpredictable
HUB & SPOKE

POINT TO POINT

Fast and predictable but cost prohibitive over longer distances

A
B



HUB & SPOKE

97% Courier, Express & Parcel Market
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3% Courier, Express & Parcel Market

+7,500 more!



POINT TO POINT
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Shutl generates a quote from 
each relevant carrier within 
platform
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Shutl generates a quote from 
each relevant carrier within 
platform

Optimum picked based
on price & quality rating
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SHOP
SHOP



On checkout, delivery sent via API into
chosen carrier’s transportation system

SHOP

$$

SHOP



On checkout, delivery sent via API into
chosen carrier’s transportation system

Courier collects from nearest
store and delivers to shopper

SHOP

$$





Delivery status updated in
real-time, performance
compared against SLA &
carrier quality rating updated

Better performing carriers
get more deliveries & can
demand higher prices



Delivery status updated in
real-time, performance
compared against SLA &
carrier quality rating updated

Better performing carriers
get more deliveries & can
demand higher prices



Delivery status updated in
real-time, performance
compared against SLA &
carrier quality rating updated

Better performing carriers
get more deliveries & can
demand higher prices



Track your order online…
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FEEDBACK

Shutl sends feedback email to consumer seconds after they have received 
delivery asking to rate qualitative aspects of experience



FEEDBACK

Feedback streamed unedited to shutl.com/feedback & facebook
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Version One
Ruby 1.8, Rails 2.3 and MySQL



Version One
Ruby 1.8, Rails 2.3 and MySQL



Version One
Ruby 1.8, Rails 2.3 and MySQL

• Well-known tale: built quickly, worked slowly, tough to maintain	


• Getting a quote for an hour time-slot took over 4 seconds
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Here is the Shutl price calendar

To generate this in V1, the merchant site would have had to call Shutl to get 
available slots (2 seconds)

Then, they would have to call Shutl to generate a quote for each slot - for 
two days of store opening, that’s 20+ slots

So, that’s 2 + (20 x 4) seconds, 1:22 to generate the data for this calendar

In V1, this UX could never have happened.



V2



• Broke app into services	


• Services focused around functions like quoting, booking, and 
giving feedback	


• Key goal for the project was improving the speed of the quoting 
operation, which is where we used graph databases

V2



V1
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V2

• Quoting for 20 windows down 
from 82000 ms to 800 ms

• Code complexity much 
reduced



A large part of the success of our rewrite was 
down to the graph database.



What is a graph anyway?





a collection of vertices (nodes) 	

connected by edges (relationships)

a simple graph



a short history

Leonard Euler

the seven bridges of Königsberg (1735)!
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Euler walk

each node has an even degree
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Euler walk

two nodes have an odd degree

no



directed graph

each relationship has a direction or	

one start node and one end node



property graph

Person	

name: Sam

nodes contain properties (key, value)	

relationships have a type and are always directed	

relationships can contain properties too

Person	

name: Volker

:friends

Person	

name: Megan

:knows	

since: 2005

Company	

name: eBay

:friends

:works_for

:works_for



The Case for Graph Databases



relationships are explicit stored



additive domain modelling



 whiteboard friendly



traversals of relationships are easy and very fast



DB performance remains relatively constant as 

queries are localised to its portion of the graph.  

O(1) for same query 



a graph is its own index (constant query performance)
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a graph is its own index (constant query performance)



the case for Neo4j



standalone or embedded in jvm



ruby/jruby



ruby libraries - neo4j gem by Andreas Ronge 
(https://github.com/andreasronge/neo4j)

https://github.com/andreasronge/neo4j


cypher



the neotech guys are awesome



Querying the graph: Cypher

declarative query language specific to neo4j	


easy to learn and intuitive	


use specific patterns to query for (something that looks like ‘this’)	


inspired partly by SQL (WHERE and ORDER BY) and SPARQL (pattern matching)	


focuses on what to query for and not how to query for it	


switch from a mySQl world is made easier by the use of cypher instead of having to learn 

a traversal framework straight away



START:     Starting points in the graph, obtained via index lookups or by element IDs.	

MATCH:     The graph pattern to match, bound to the starting points in START.	

WHERE:     Filtering criteria.	

RETURN:   What to return.	

CREATE:   Creates nodes and relationships.	

DELETE:   Removes nodes, relationships and properties.	

SET:           Set values to properties.	

FOREACH: Performs updating actions once per element in a list.	

WITH:        Divides a query into multiple, distinct parts	
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cypher clauses

START:     Starting points in the graph, obtained via index lookups or by element IDs.	

MATCH:     The graph pattern to match, bound to the starting points in START.	

WHERE:     Filtering criteria.	
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an example

Person	

name: Sam

Person	

name: Volker

:friends

Person	

name: Megan

:knows	

since: 2005

Company	

name: eBay

:friends

:works_for

:works_for

Person	

name: Jim

:friends

Company	

name: neotech

:works_for



find all the companies my friends work for

MATCH (person{ name:’Volker’ }) -[:friends]	
      - (person) - [:works_for]-> company	
RETURN company	
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find all the companies my friend’s friends work for

MATCH (person{ name:’Volker’ }) -
[:friends*2..2]-(person) - [:works_for] 
-> company	

RETURN company	
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Person	

name: Sam

Person	
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:friends

Person	
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:knows	

since: 2005

Company	

name: eBay

:friends

:works_for

:works_for

Person	

name: Jim

:friends

Company	

name: neotech

:works_for



find all my friends who work for neotech
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Person	

name: Sam

Person	

name: Volker

:friends

Person	

name: Megan

:knows	

since: 2005

Company	

name: eBay

:friends

:works_for

:works_for
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name: neotech
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a good place to try it out: 
!

http://console.neo4j.org/	

!

http://gist.neo4j.org/

http://console.neo4j.org/
http://gist.neo4j.org/
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SELECT *  FROM carriers	

LEFT JOIN locations ON carrier.location_id = location.id  	

LEFT JOIN stores ON stores.location_id = carrier.location_id 	

WHERE     stores.name = ‘ebay_store’	




SELECT * FROM carriers	

LEFT JOIN locations ON carrier.location_id = location.id  OR     

carrier.location_id = location.parent_id 	

LEFT JOIN stores  ON stores.location_id = carrier.location_id 	

WHERE     stores.name = ‘ebay_store’



?



MATCH (store{ id:’ebay_store’ }) -[:located]	
      -> () <- [:contains*0..2] - (locality) 	
      <- [:operates]- carrier	
RETURN carrier	



root (0)

Year: 2013

Month: 05 Month: 01

:year_2015

:month_01:month_05

:year_2014

Year: 2015

Month: 06

:month_06

Day: 24 Day: 25

:day_24 :day_25

Day: 26

:day_26

Event 1 Event 2 Event 3

:happens :happens :happens :happens

representing dates/times



find all events on a specific day
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all together

Locality	

id = california

Locality	

id = marin_county

Locality	

id = 94901

:contains

Store	

id = ebay_store

:located

:contains

Carrier	

id = carrier_1

:operates

root (0)

Year: 2013

Month: 05

:month_05

:year_2014

Day: 24

:day_24

hour 09

hour 10

:hour_09

:hour_10

hour 11 :hour_11
:available {premium: 1}

:available {premium: 1.5}
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[:month_05] - () [:year_2014] - ()	

RETURN carrier, available.premium as premium	

all together
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Other graph uses
• Recommendation engines

• Organisational analysis

• Graphing your infrastructure
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• There was a learning curve in switching from a relational 
mentality to a graph one

• Tooling not as mature as in the relational world

• No out of the box solution for db migrations

• Seeding an embedded database was unfamiliar

Some gotchas
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• Setting up scenarios for tests was tedious

• Built our own tool based on the geoff syntax developed by Nigel Small

• Geoff allows modelling of graphs in textual form and provides an 

interface to insert them into an existing graph

(A) {“name”: “Alice”}

(B) {“name”: “Bob”}

(A) -[:KNOWS] -> (B)

• We created a Ruby dsl for modelling a graph and inserting it into the db 

that works with factory_girl

• Open source - https://github.com/shutl/geoff

Testing was a challenge

https://github.com/shutl/geoff
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Wrap Up

• Neo4j and graph theory enabled Shutl to 
achieve big performance increases in its 
most important operation - calculating 
delivery prices

• It’s a new tool based on tested theory, and 
cypher is the first language that allows you to 
query graphs in a declarative way (like SQL)

• Tooling and adoption is immature but getting 
better all the time



 

Thank you! 
!

Any questions?

Sam Phillips 
Head of Engineering	


!
@samsworldofno	


http://samsworldofno.com	

sam@shutl.com

Volker Pacher 
Senior Developer	

!
@vpacher	

https://github.com/vpacher	

volker@shutl.com  

mailto:sam@shutl.com?subject=
mailto:volker@shutl.com?subject=
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