

How Shutl Delivers Even Faster Using Neo4j

Sam Phillips and Volker Pacher	

@samsworldofno @vpacher	

Volker Pacher

Sam Phillips

Graphs at Shutl

Graphs at Shutl

• Graph databases are awesome

Graphs at Shutl

• Graph databases are awesome

• We’ve seen lots of the talks about modelling

Graphs at Shutl

• Graph databases are awesome

• We’ve seen lots of the talks about modelling

• But querying is important too

Graphs at Shutl

• Graph databases are awesome

• We’ve seen lots of the talks about modelling

• But querying is important too

• So let’s talk about querying too!

Show of hands

Show of hands

• Who has used graph databases before?

Show of hands

• Who has used graph databases before?

• Who has used Neo4j before?

Shutl

Shutl

ECOMMERCE IS QUICK & CONVENIENT

ECOMMERCE IS QUICK & CONVENIENT

PAYPAL FOR AWESOME DELIVERY

PAYPAL FOR AWESOME DELIVERY

PAYPAL FOR AWESOME DELIVERY

Branded, super quick delivery that people trust, embedded in merchant websites

A B

HUB & SPOKE

A B

HUB & SPOKE

A B

Only cost effective means to deliver 10+ miles but slow and unpredictable

HUB & SPOKE

A B

Only cost effective means to deliver 10+ miles but slow and unpredictable
HUB & SPOKE

A B

Only cost effective means to deliver 10+ miles but slow and unpredictable
HUB & SPOKE

POINT TO POINT

A
B

A B

Only cost effective means to deliver 10+ miles but slow and unpredictable
HUB & SPOKE

POINT TO POINT

Fast and predictable but cost prohibitive over longer distances

A
B

HUB & SPOKE

97% Courier, Express & Parcel Market

POINT TO POINT

3% Courier, Express & Parcel Market

POINT TO POINT

3% Courier, Express & Parcel Market

+7,500 more!

POINT TO POINT

SHOP

Shutl generates a quote from
each relevant carrier within
platform

SHOP

$$

$$$

$

$$

$

$

Shutl generates a quote from
each relevant carrier within
platform

Optimum picked based
on price & quality rating

SHOP

$$

$$$

$

$$

$

$$

SHOP
SHOP

On checkout, delivery sent via API into
chosen carrier’s transportation system

SHOP

$$

SHOP

On checkout, delivery sent via API into
chosen carrier’s transportation system

Courier collects from nearest
store and delivers to shopper

SHOP

$$

Delivery status updated in
real-time, performance
compared against SLA &
carrier quality rating updated

Better performing carriers
get more deliveries & can
demand higher prices

Delivery status updated in
real-time, performance
compared against SLA &
carrier quality rating updated

Better performing carriers
get more deliveries & can
demand higher prices

Delivery status updated in
real-time, performance
compared against SLA &
carrier quality rating updated

Better performing carriers
get more deliveries & can
demand higher prices

Track your order online…

FEEDBACK

Quality paramount since we are motivated by LTV of shopper

FEEDBACK

Quality paramount since we are motivated by LTV of shopper

FEEDBACK

Shutl sends feedback email to consumer seconds after they have received
delivery asking to rate qualitative aspects of experience

FEEDBACK

Feedback streamed unedited to shutl.com/feedback & facebook

FEEDBACK

FEEDBACK

FEEDBACK

FEEDBACK

COMPANYSHUTL IS NOW AN

Version One
Ruby 1.8, Rails 2.3 and MySQL

Version One
Ruby 1.8, Rails 2.3 and MySQL

Version One
Ruby 1.8, Rails 2.3 and MySQL

• Well-known tale: built quickly, worked slowly, tough to maintain	

• Getting a quote for an hour time-slot took over 4 seconds

Here is the Shutl price calendar

Here is the Shutl price calendar

To generate this in V1, the merchant site would have had to call Shutl to get
available slots (2 seconds)

Here is the Shutl price calendar

To generate this in V1, the merchant site would have had to call Shutl to get
available slots (2 seconds)

Then, they would have to call Shutl to generate a quote for each slot - for
two days of store opening, that’s 20+ slots

Here is the Shutl price calendar

To generate this in V1, the merchant site would have had to call Shutl to get
available slots (2 seconds)

Then, they would have to call Shutl to generate a quote for each slot - for
two days of store opening, that’s 20+ slots

So, that’s 2 + (20 x 4) seconds, 1:22 to generate the data for this calendar

Here is the Shutl price calendar

To generate this in V1, the merchant site would have had to call Shutl to get
available slots (2 seconds)

Then, they would have to call Shutl to generate a quote for each slot - for
two days of store opening, that’s 20+ slots

So, that’s 2 + (20 x 4) seconds, 1:22 to generate the data for this calendar

In V1, this UX could never have happened.

V2

• Broke app into services	

• Services focused around functions like quoting, booking, and
giving feedback	

• Key goal for the project was improving the speed of the quoting
operation, which is where we used graph databases

V2

V1

V2

V1

V2

• Quoting for 20 windows down
from 82000 ms to 800 ms

V1

V2

• Quoting for 20 windows down
from 82000 ms to 800 ms

• Code complexity much
reduced

V1

V2

• Quoting for 20 windows down
from 82000 ms to 800 ms

• Code complexity much
reduced

A large part of the success of our rewrite was
down to the graph database.

What is a graph anyway?

a collection of vertices (nodes) 	

connected by edges (relationships)

a simple graph

a short history

Leonard Euler

the seven bridges of Königsberg (1735)!

the seven bridges of Königsberg (1735)!

the seven bridges of Königsberg (1735)!

the seven bridges of Königsberg (1735)!

the seven bridges of Königsberg (1735)!

the seven bridges of Königsberg (1735)!

Euler walk

each node has an even degree

Euler walk

Euler walk

Euler walk

two nodes have an odd degree

Euler walk

two nodes have an odd degree

Euler walk

two nodes have an odd degree

no

directed graph

each relationship has a direction or	

one start node and one end node

property graph

Person	

name: Sam

nodes contain properties (key, value)	

relationships have a type and are always directed	

relationships can contain properties too

Person	

name: Volker

:friends

Person	

name: Megan

:knows	

since: 2005

Company	

name: eBay

:friends

:works_for

:works_for

The Case for Graph Databases

relationships are explicit stored

additive domain modelling

 whiteboard friendly

traversals of relationships are easy and very fast

DB performance remains relatively constant as

queries are localised to its portion of the graph.

O(1) for same query

a graph is its own index (constant query performance)

a graph is its own index (constant query performance)

a graph is its own index (constant query performance)

the case for Neo4j

standalone or embedded in jvm

ruby/jruby

ruby libraries - neo4j gem by Andreas Ronge
(https://github.com/andreasronge/neo4j)

https://github.com/andreasronge/neo4j

cypher

the neotech guys are awesome

Querying the graph: Cypher

declarative query language specific to neo4j	

easy to learn and intuitive	

use specific patterns to query for (something that looks like ‘this’)	

inspired partly by SQL (WHERE and ORDER BY) and SPARQL (pattern matching)	

focuses on what to query for and not how to query for it	

switch from a mySQl world is made easier by the use of cypher instead of having to learn

a traversal framework straight away

START: Starting points in the graph, obtained via index lookups or by element IDs.	

MATCH: The graph pattern to match, bound to the starting points in START.	

WHERE: Filtering criteria.	

RETURN: What to return.	

CREATE: Creates nodes and relationships.	

DELETE: Removes nodes, relationships and properties.	

SET: Set values to properties.	

FOREACH: Performs updating actions once per element in a list.	

WITH: Divides a query into multiple, distinct parts	

cypher clauses

START: Starting points in the graph, obtained via index lookups or by element IDs.	

MATCH: The graph pattern to match, bound to the starting points in START.	

WHERE: Filtering criteria.	

RETURN: What to return.	

CREATE: Creates nodes and relationships.	

DELETE: Removes nodes, relationships and properties.	

SET: Set values to properties.	

FOREACH: Performs updating actions once per element in a list.	

WITH: Divides a query into multiple, distinct parts	

cypher clauses

START: Starting points in the graph, obtained via index lookups or by element IDs.	

MATCH: The graph pattern to match, bound to the starting points in START.	

WHERE: Filtering criteria.	

RETURN: What to return.	

CREATE: Creates nodes and relationships.	

DELETE: Removes nodes, relationships and properties.	

SET: Set values to properties.	

FOREACH: Performs updating actions once per element in a list.	

WITH: Divides a query into multiple, distinct parts	

an example

Person	

name: Sam

Person	

name: Volker

:friends

Person	

name: Megan

:knows	

since: 2005

Company	

name: eBay

:friends

:works_for

:works_for

Person	

name: Jim

:friends

Company	

name: neotech

:works_for

find all the companies my friends work for

MATCH (person{ name:’Volker’ }) -[:friends]	
 - (person) - [:works_for]-> company	
RETURN company	

find all the companies my friends work for

MATCH (person{ name:’Volker’ }) -[:friends]	
 - (person) - [:works_for]-> company	
RETURN company	

find all the companies my friends work for

MATCH (person{ name:’Volker’ }) -[:friends]	
 - (person) - [:works_for]-> company	
RETURN company	

Person	

name: Sam

Person	

name: Volker

:friends

Person	

name: Megan

:knows	

since: 2005

Company	

name: eBay

:friends

:works_for

:works_for

Person	

name: Jim

:friends

Company	

name: neotech

:works_for

find all the companies my friend’s friends work for

MATCH (person{ name:’Volker’ }) -
[:friends*2..2]-(person) - [:works_for]
-> company	

RETURN company	

find all the companies my friend’s friends work for

MATCH (person{ name:’Volker’ }) -
[:friends*2..2]-(person) - [:works_for]
-> company	

RETURN company	

find all the companies my friend’s friends work for

MATCH (person{ name:’Volker’ }) -
[:friends*2..2]-(person) - [:works_for]
-> company	

RETURN company	

Person	

name: Sam

Person	

name: Volker

:friends

Person	

name: Megan

:knows	

since: 2005

Company	

name: eBay

:friends

:works_for

:works_for

Person	

name: Jim

:friends

Company	

name: neotech

:works_for

find all my friends who work for neotech

MATCH (person{ name:’Volker’ }) -[:friends]	
 -(friends) - [:works_for]-> company	
WHERE company.name = ‘neotech’	
RETURN friends	

find all my friends who work for neotech

MATCH (person{ name:’Volker’ }) -[:friends]	
 -(friends) - [:works_for]-> company	
WHERE company.name = ‘neotech’	
RETURN friends	

find all my friends who work for neotech

MATCH (person{ name:’Volker’ }) -[:friends]	
 -(friends) - [:works_for]-> company	
WHERE company.name = ‘neotech’	
RETURN friends	

Person	

name: Sam

Person	

name: Volker

:friends

Person	

name: Megan

:knows	

since: 2005

Company	

name: eBay

:friends

:works_for

:works_for

Person	

name: Jim

:friends

Company	

name: neotech

:works_for

a good place to try it out:
!

http://console.neo4j.org/	

!

http://gist.neo4j.org/

http://console.neo4j.org/
http://gist.neo4j.org/

coverage example

Locality	

id = california

Locality	

id = marin_county

Locality	

id = 94901

:contains

:contains

Locality	

id = 94903

Locality	

id = 94902

:contains :contains

coverage example

Locality	

id = california

Locality	

id = marin_county

Locality	

id = 94901

:contains

:contains

Locality	

id = 94903

Locality	

id = 94902

:contains :contains

Carrier	

id = carrier_1

:operates :operates

coverage example

Locality	

id = california

Locality	

id = marin_county

Locality	

id = 94901

:contains

Store	

id = ebay_store

:located

:contains

Locality	

id = 94903

Locality	

id = 94902

:contains :contains

Carrier	

id = carrier_1

:operates :operates

coverage example

Locality	

id = california

Locality	

id = marin_county

Locality	

id = 94901

:contains

Store	

id = ebay_store

:located

:contains

Locality	

id = 94903

Locality	

id = 94902

:contains :contains

:operates Carrier	

id = carrier_2

Carrier	

id = carrier_1

:operates :operates

MATCH (store{ id:’ebay_store’ }) -[:located]	
 -> (locality) <- [:operates]- carrier	
RETURN carrier	

the query

MATCH (store{ id:’ebay_store’ }) -[:located]	
 -> (locality) <- [:operates]- carrier	
RETURN carrier	

the query

MATCH (store{ id:’ebay_store’ }) -[:located]	
 -> (locality) <- [:operates]- carrier	
RETURN carrier	

the query

Locality	

id = 94902

Locality	

id = california

Locality	

id = marin_county

Locality	

id = 94901

:contains

Store	

id = ebay_store

:located

:contains

Locality	

id = 94903

:contains :contains

Carrier	

id = carrier_1

:operates :operates

MATCH (store{ id:’ebay_store’ }) -[:located]	
 -> () <- [:contains*0..2] - (locality) 	
 <- [:operates]- carrier	
RETURN carrier	

the query

MATCH (store{ id:’ebay_store’ }) -[:located]	
 -> () <- [:contains*0..2] - (locality) 	
 <- [:operates]- carrier	
RETURN carrier	

the query

MATCH (store{ id:’ebay_store’ }) -[:located]	
 -> () <- [:contains*0..2] - (locality) 	
 <- [:operates]- carrier	
RETURN carrier	

the query

Locality	

id = california

Locality	

id = marin_county

Locality	

id = 94901

:contains

Store	

id = ebay_store

:located

:contains

Locality	

id = 94903

Locality	

id = 94902

:contains :contains

:operates Carrier	

id = carrier_2

Carrier	

id = carrier_1

:operates :operates

MATCH (store{ id:’ebay_store’ }) -[:located]	
 -> () <- [:contains*0..2] - (locality) 	
 <- [:operates]- carrier	
RETURN carrier	

the query

Locality	

id = california

Locality	

id = marin_county

Locality	

id = 94901

:contains

Store	

id = ebay_store

:located

:contains

Locality	

id = 94903

Locality	

id = 94902

:contains :contains

:operates Carrier	

id = carrier_2

Carrier	

id = carrier_1

:operates :operates

MATCH (store{ id:’ebay_store’ }) -[:located]	
 -> () <- [:contains*0..2] - (locality) 	
 <- [:operates]- carrier	
RETURN carrier	

the query

Locality	

id = california

Locality	

id = marin_county

Locality	

id = 94901

:contains

Store	

id = ebay_store

:located

:contains

Locality	

id = 94903

Locality	

id = 94902

:contains :contains

:operates Carrier	

id = carrier_2

Carrier	

id = carrier_1

:operates :operates

MATCH (store{ id:’ebay_store’ }) -[:located]	
 -> () <- [:contains*0..2] - (locality) 	
 <- [:operates]- carrier	
RETURN carrier	

the query

Locality	

id = california

Locality	

id = marin_county

Locality	

id = 94901

:contains

Store	

id = ebay_store

:located

:contains

Locality	

id = 94903

Locality	

id = 94902

:contains :contains

:operates Carrier	

id = carrier_2

Carrier	

id = carrier_1

:operates :operates

SELECT * FROM carriers	

LEFT JOIN locations ON carrier.location_id = location.id 	

LEFT JOIN stores ON stores.location_id = carrier.location_id 	

WHERE stores.name = ‘ebay_store’	

SELECT * FROM carriers	

LEFT JOIN locations ON carrier.location_id = location.id OR

carrier.location_id = location.parent_id 	

LEFT JOIN stores ON stores.location_id = carrier.location_id 	

WHERE stores.name = ‘ebay_store’

?

MATCH (store{ id:’ebay_store’ }) -[:located]	
 -> () <- [:contains*0..2] - (locality) 	
 <- [:operates]- carrier	
RETURN carrier	

root (0)

Year: 2013

Month: 05 Month: 01

:year_2015

:month_01:month_05

:year_2014

Year: 2015

Month: 06

:month_06

Day: 24 Day: 25

:day_24 :day_25

Day: 26

:day_26

Event 1 Event 2 Event 3

:happens :happens :happens :happens

representing dates/times

find all events on a specific day

START root=node(0)	
MATCH root - [:year_2014] -> () -[:month_05] ->

()- [:day_24] -> () - [:happens] -> event 	
RETURN event	

find all events on a specific day
START root=node(0)	
MATCH root - [:year_2014] -> () -[:month_05] ->

()- [:day_24] -> () - [:happens] -> event 	
RETURN event	

find all events on a specific day
START root=node(0)	
MATCH root - [:year_2014] -> () -[:month_05] ->

()- [:day_24] -> () - [:happens] -> event 	
RETURN event	 root (0)

Year: 2013

Month: 05 Month: 01

:year_2015

:month_01:month_05

:year_2014

Year: 2015

Month: 06

:month_06

Day: 24 Day: 25

:day_24 :day_25

Day: 26

:day_26

Event 1 Event 2 Event 3

:happens :happens :happens :happens

find all events on a specific day
START root=node(0)	
MATCH root - [:year_2014] -> () -[:month_05] ->

()- [:day_24] -> () - [:happens] -> event 	
RETURN event	 root (0)

Year: 2013

Month: 05 Month: 01

:year_2015

:month_01:month_05

:year_2014

Year: 2015

Month: 06

:month_06

Day: 24 Day: 25

:day_24 :day_25

Day: 26

:day_26

Event 1 Event 2 Event 3

:happens :happens :happens :happens

find all events on a specific day
START root=node(0)	
MATCH root - [:year_2014] -> () -[:month_05] ->

()- [:day_24] -> () - [:happens] -> event 	
RETURN event	 root (0)

Year: 2013

Month: 05 Month: 01

:year_2015

:month_01:month_05

:year_2014

Year: 2015

Month: 06

:month_06

Day: 24 Day: 25

:day_24 :day_25

Day: 26

:day_26

Event 1 Event 2 Event 3

:happens :happens :happens :happens

find all events on a specific day
START root=node(0)	
MATCH root - [:year_2014] -> () -[:month_05] ->

()- [:day_24] -> () - [:happens] -> event 	
RETURN event	 root (0)

Year: 2013

Month: 05 Month: 01

:year_2015

:month_01:month_05

:year_2014

Year: 2015

Month: 06

:month_06

Day: 24 Day: 25

:day_24 :day_25

Day: 26

:day_26

Event 1 Event 2 Event 3

:happens :happens :happens :happens

find all events on a specific day
START root=node(0)	
MATCH root - [:year_2014] -> () -[:month_05] ->

()- [:day_24] -> () - [:happens] -> event 	
RETURN event	 root (0)

Year: 2013

Month: 05 Month: 01

:year_2015

:month_01:month_05

:year_2014

Year: 2015

Month: 06

:month_06

Day: 24 Day: 25

:day_24 :day_25

Day: 26

:day_26

Event 1 Event 2 Event 3

:happens :happens :happens :happens

find all events on a specific day
START root=node(0)	
MATCH root - [:year_2014] -> () -[:month_05] ->

()- [:day_24] -> () - [:happens] -> event 	
RETURN event	 root (0)

Year: 2013

Month: 05 Month: 01

:year_2015

:month_01:month_05

:year_2014

Year: 2015

Month: 06

:month_06

Day: 24 Day: 25

:day_24 :day_25

Day: 26

:day_26

Event 1 Event 2 Event 3

:happens :happens :happens :happens

all together

Locality	

id = california

Locality	

id = marin_county

Locality	

id = 94901

:contains

Store	

id = ebay_store

:located

:contains

Carrier	

id = carrier_1

:operates

root (0)

Year: 2013

Month: 05

:month_05

:year_2014

Day: 24

:day_24

hour 09

hour 10

:hour_09

:hour_10

hour 11 :hour_11
:available {premium: 1}

:available {premium: 1.5}

MATCH (store{ id:’ebay_store’ }) -[:located]	
 -> (locality) <- [:operates]- carrier -

[available:available] -> () <-
[:hour_10] - () <- [:day_24] - ()
[:month_05] - () [:year_2014] - ()	

RETURN carrier, available.premium as premium	

all together

MATCH (store{ id:’ebay_store’ }) -[:located]	
 -> (locality) <- [:operates]- carrier -

[available:available] -> () <-
[:hour_10] - () <- [:day_24] - ()
[:month_05] - () [:year_2014] - ()	

RETURN carrier, available.premium as premium	

all together

MATCH (store{ id:’ebay_store’ }) -[:located]	
 -> (locality) <- [:operates]- carrier -

[available:available] -> () <-
[:hour_10] - () <- [:day_24] - ()
[:month_05] - () [:year_2014] - ()	

RETURN carrier, available.premium as premium	

all together

Locality	

id = california

Locality	

id = marin_county

Locality	

id = 94901

:contains

Store	

id = ebay_store

:located

:contains

Carrier	

id = carrier_1

:operates

root (0)

Year: 2013

Month: 05

:month_05

:year_2014

Day: 24

:day_24

hour 09

hour 10

:hour_09

:hour_10

hour 11 :hour_11
:available {premium: 1}

:available {premium: 1.5}

Other graph uses

Other graph uses
• Recommendation engines

Other graph uses
• Recommendation engines

• Organisational analysis

Other graph uses
• Recommendation engines

• Organisational analysis

• Graphing your infrastructure

Some gotchas

• There was a learning curve in switching from a relational
mentality to a graph one

Some gotchas

• There was a learning curve in switching from a relational
mentality to a graph one

• Tooling not as mature as in the relational world

Some gotchas

• There was a learning curve in switching from a relational
mentality to a graph one

• Tooling not as mature as in the relational world

• No out of the box solution for db migrations

Some gotchas

• There was a learning curve in switching from a relational
mentality to a graph one

• Tooling not as mature as in the relational world

• No out of the box solution for db migrations

• Seeding an embedded database was unfamiliar

Some gotchas

Testing was a challenge

• Setting up scenarios for tests was tedious

Testing was a challenge

https://github.com/shutl/geoff

• Setting up scenarios for tests was tedious

• Built our own tool based on the geoff syntax developed by Nigel Small

Testing was a challenge

https://github.com/shutl/geoff

• Setting up scenarios for tests was tedious

• Built our own tool based on the geoff syntax developed by Nigel Small

• Geoff allows modelling of graphs in textual form and provides an

interface to insert them into an existing graph

Testing was a challenge

https://github.com/shutl/geoff

• Setting up scenarios for tests was tedious

• Built our own tool based on the geoff syntax developed by Nigel Small

• Geoff allows modelling of graphs in textual form and provides an

interface to insert them into an existing graph

(A) {“name”: “Alice”}

Testing was a challenge

https://github.com/shutl/geoff

• Setting up scenarios for tests was tedious

• Built our own tool based on the geoff syntax developed by Nigel Small

• Geoff allows modelling of graphs in textual form and provides an

interface to insert them into an existing graph

(A) {“name”: “Alice”}

(B) {“name”: “Bob”}

Testing was a challenge

https://github.com/shutl/geoff

• Setting up scenarios for tests was tedious

• Built our own tool based on the geoff syntax developed by Nigel Small

• Geoff allows modelling of graphs in textual form and provides an

interface to insert them into an existing graph

(A) {“name”: “Alice”}

(B) {“name”: “Bob”}

(A) -[:KNOWS] -> (B)

Testing was a challenge

https://github.com/shutl/geoff

• Setting up scenarios for tests was tedious

• Built our own tool based on the geoff syntax developed by Nigel Small

• Geoff allows modelling of graphs in textual form and provides an

interface to insert them into an existing graph

(A) {“name”: “Alice”}

(B) {“name”: “Bob”}

(A) -[:KNOWS] -> (B)

• We created a Ruby dsl for modelling a graph and inserting it into the db

that works with factory_girl

Testing was a challenge

https://github.com/shutl/geoff

• Setting up scenarios for tests was tedious

• Built our own tool based on the geoff syntax developed by Nigel Small

• Geoff allows modelling of graphs in textual form and provides an

interface to insert them into an existing graph

(A) {“name”: “Alice”}

(B) {“name”: “Bob”}

(A) -[:KNOWS] -> (B)

• We created a Ruby dsl for modelling a graph and inserting it into the db

that works with factory_girl

• Open source - https://github.com/shutl/geoff

Testing was a challenge

https://github.com/shutl/geoff

Wrap Up

Wrap Up

• Neo4j and graph theory enabled Shutl to
achieve big performance increases in its
most important operation - calculating
delivery prices

Wrap Up

• Neo4j and graph theory enabled Shutl to
achieve big performance increases in its
most important operation - calculating
delivery prices

• It’s a new tool based on tested theory, and
cypher is the first language that allows you to
query graphs in a declarative way (like SQL)

Wrap Up

• Neo4j and graph theory enabled Shutl to
achieve big performance increases in its
most important operation - calculating
delivery prices

• It’s a new tool based on tested theory, and
cypher is the first language that allows you to
query graphs in a declarative way (like SQL)

• Tooling and adoption is immature but getting
better all the time

Thank you!
!

Any questions?

Sam Phillips
Head of Engineering	

!
@samsworldofno	

http://samsworldofno.com	

sam@shutl.com

Volker Pacher
Senior Developer	

!
@vpacher	

https://github.com/vpacher	

volker@shutl.com

mailto:sam@shutl.com?subject=
mailto:volker@shutl.com?subject=

our

