
Main sponsor

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 2

Lambdas & Streams: Taking
the Hard Work Out of Bulk
Operations in Java SE 8
Simon Ritter
Head of Java Evangelism
Oracle Corporation

Twitter: @speakjava

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 3

The following is intended to outline our general product
direction. It is intended for information purposes only, and may
not be incorporated into any contract. It is not a commitment to
deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole
discretion of Oracle.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 4

Lambdas In Java

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 5

The Problem: External Iteration
List<Student> students = ...

double highestScore = 0.0;

for (Student s : students) {

 if (s.gradYear == 2011) {

 if (s.score > highestScore) {

 highestScore = s.score;

 }

 }

}

•  Client controls iteration
•  Inherently serial: iterate from

beginning to end
•  Not thread-safe because

business logic is stateful
(mutable accumulator
variable)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 6

Internal Iteration With Inner Classes

§  Iteration, filtering and
accumulation are handled by the
library

§  Not inherently serial – traversal
may be done in parallel

§  Traversal may be done lazily – so
one pass, rather than three

§  Thread safe – client logic is
stateless

§  High barrier to use
–  Syntactically ugly

More Functional, Fluent

List<Student> students = ...

double highestScore =

 students.filter(new Predicate<Student>() {

 public boolean op(Student s) {

 return s.getGradYear() == 2011;

 }

 }).map(new Mapper<Student,Double>() {

 public Double extract(Student s) {

 return s.getScore();

 }

 }).max();

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 7

Internal Iteration With Lambdas
SomeList<Student> students = ...

double highestScore =

 students.stream()

 .filter(Student s -> s.getGradYear() == 2011)

 .map(Student s -> s.getScore())

 .max();

•  More readable
•  More abstract
•  Less error-prone
•  No reliance on mutable state
•  Easier to make parallel

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 8

Lambda Expressions

§ Lambda expressions represent anonymous functions
–  Like a method, has a typed argument list, a return type, a set of thrown

exceptions, and a body
–  Not associated with a class

§ We now have parameterised behaviour, not just values

Some Details

double highestScore =
 students.stream()
 .filter(Student s -> s.getGradYear() == 2011)
 .map(Student s -> s.getScore())
 .max();

What

How

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 9

Lambda Expression Types
•  Single-method interfaces are used extensively in Java

–  Functions and callbacks
–  Definition: a functional interface is an interface with one abstract method
–  Functional interfaces are identified structurally
–  The type of a lambda expression will be a functional interface

 interface Comparator<T> { boolean compare(T x, T y); }
 interface FileFilter { boolean accept(File x); }
 interface Runnable { void run(); }
 interface ActionListener { void actionPerformed(…); }
 interface Callable<T> { T call(); }

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 10

Target Typing
§  A lambda expression is a way to create an instance of a functional interface

–  Which functional interface is inferred from the context
–  Works both in assignment and method invocation contexts

–  Be careful, remember signature of functional interface

sort(myList, (String x, String y) -> x.length() – y.length());

Comparator<String> c = (String x, String y) -> x.length() - y.length();

addActionListener((ae) -> System.out.println(“Got it!”));

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 11

Local Variable Capture

•  Lambda expressions can refer to effectively final local variables from
the enclosing scope

•  Effectively final means that the variable meets the requirements for final
variables (i.e., assigned once), even if not explicitly declared final

•  This is a form of type inference

void expire(File root, long before) {
 root.listFiles(File p -> p.lastModified() <= before);

}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 12

Lexical Scoping

•  The meaning of names are the same inside the lambda as outside
•  A ‘this’ reference – refers to the enclosing object, not the lambda itself
•  Think of ‘this’ as a final predefined local
•  Remember the type of a Lambda is a functional interface

class SessionManager {
 long before = ...;

 void expire(File root) {
 // refers to ‘this.before’, just like outside the lambda
 root.listFiles(File p -> checkExpiry(p.lastModified(), this.before));
 }

 boolean checkExpiry(long time, long expiry) { ... }
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 13

Type Inferrence
§ The compiler can often infer parameter types in a lambda expression
§  Inferrence based on the target functional interface’s method signature
§ Fully statically typed (no dynamic typing sneaking in)

–  More typing with less typing

List<String> ls = getList();
Collections.sort(ls, (String x, String y) -> x.length() - y.length());

Collections.sort(ls, (x, y) -> x.length() - y.length());

static T void sort(List<T> l, Comparator<? super T> c);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 14

Method References

•  Method references let us reuse a method as a lambda expression

FileFilter x = f -> f.canRead();

FileFilter x = File::canRead;

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 15

Constructor References

§ When f.make() is invoked it will return a new ArrayList<String>

interface Factory<T> {
 T make();
}

Factory<List<String>> f = ArrayList<String>::new;

Factory<List<String>> f = () -> return new ArrayList<String>();

Equivalent to

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 16

Library Evolution

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 17

Library Evolution

•  Adding lambda expressions is a big language change
•  If Java had them from day one, the APIs would definitely look different

§ Most important APIs (Collections) are based on interfaces
•  How to extend an interface without breaking backwards compatability?

•  Adding lambda expressions to Java, but not upgrading the APIs to use
them, would be silly

•  Therefore we also need better mechanisms for library evolution

The Real Challenge

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 18

Library Evolution Goal
§ Requirement: aggregate operations on collections

–  New methods required on Collections to facilitate this

§ This is problematic

–  Can’t add new methods to interfaces without modifying all implementations
–  Can’t necessarily find or control all implementations

int heaviestBlueBlock =
 blocks.stream()
 .filter(b -> b.getColor() == BLUE)
 .map(Block::getWeight)
 .reduce(0, Integer::max);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 19

Solution: Extension Methods

•  Specified in the interface
•  From the caller’s perspective, just an ordinary interface method
•  Provides a default implementation

•  Default is only used when implementation classes do not provide a body
for the extension method

•  Implementation classes can provide a better version, or not

AKA Defender Methods

interface Collection<E> {
 default Stream<E> stream() {
 return StreamSupport.stream(spliterator());
 }
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 20

Virtual Extension Methods

•  Err, isn’t this implementing multiple inheritance for Java?
•  Yes, but Java already has multiple inheritance of types
•  This adds multiple inheritance of behavior too
•  But not state, which is where most of the trouble is
•  Can still be a source of complexity due to separate compilation and

dynamic linking
•  Class implements two interfaces, both of which have default methods
•  Same signature
•  How does the compiler differentiate?

Stop right there!

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 21

Functional Interface Definition

§ Single Abstract Method (SAM) type
§ A functional interface is an interface that has one abstract method

–  Represents a single function contract
–  Doesn’t mean it only has one method

§ Abstract classes may be considered later
§ @FunctionalInterface annotation

–  Helps ensure the functional interface contract is honoured
–  Compiler error if not a SAM

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 22

Lambdas In Full Flow:
Streams

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 23

Aggregate Operations

§ Most business logic is about aggregate operations
–  Most profitable product by region
–  Group transactions by currency

§ As we have seen, up to now, Java uses external iteration
–  Inherently serial
–  Frustratingly imperative

§  Java SE 8’s answer: Streams
–  With help from Lambdas

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 24

Stream Overview

§ Abstraction for specifying aggregate computations
–  Not a data structure
–  Can be infinite

§ Simplifies the description of aggregate computations
–  Exposes opportunitires for optimisation
–  Fusing, laziness and parrallelism

At The High Level

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 25

Stream Overview

§ A stream pipeline consists of three types of things
–  A source
–  Zero or more intermediate operations
–  A terminal operation

§  Producing a result or a side-effect

Pipeline

int sum = transactions.stream().
 filter(t -> t.getBuyer().getCity().equals(“London”)).
 mapToInt(Transaction::getPrice).
 sum();

Source

Intermediate operation
Terminal operation

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 26

Stream Overview

§ The filter and map methods don’t really do any work
–  Set up a pipeline of operations and return a new Stream

§ All work happens when we get to the sum() operation
–  filter()/map()/sum() fused into one pass on the data

§  For both sequential and parallel pipelines

Execution

int sum = transactions.stream().
 filter(t -> t.getBuyer().getCity().equals(“London”)). // Lazy
 mapToInt(Transaction::getPrice). // Lazy
 sum(); // Execute the pipeline

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 27

Stream Sources

§ From collections and arrays
–  Collection.stream()
–  Collection.parallelStream()

–  Arrays.stream(T array) or Stream.of()
§ Static factories

–  IntStream.range()

–  Files.walk()

§ Roll your own
–  java.util.Spliterator()

Many Ways To Create

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 28

Stream Sources Provide

§ Access to stream elements
§ Decomposition (for parallel operations)

–  Fork-join framework
§ Stream characteristics

–  ORDERED
–  DISTINCT
–  SORTED
–  SIZED
–  SUBSIZED
–  NONNULL
–  IMMUTABLE
–  CONCURRENT

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 29

Stream Intermediate Operations

§ Can affect pipeline characteristics
–  map() preserves SIZED but not necessarily DISTINCT or SORTED

§ Some operations fuse/convert to parallel better than others
–  Stateless operations (map, filter) fuse/convert perfectly
–  Stateful operations (sorted, distint, limit) fuse/convert to varying

degrees

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 30

Stream Terminal Operations

§  Invoking a terminal operation executes the pipeline
–  All operations can execute sequentially or in parallel

§ Terminal operations can take advantage of pipeline characteristics
–  toArray() can avoid copying for SIZED pipelines by allocating in

advance

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 31

java.util.function Package

§ Predicate<T>
–  Determine if the input of type T matches some criteria

§ Consumer<T>
–  Accept a single input argumentof type T, and return no result

§ Function<T, R>
–  Apply a function to the input type T, generating a result of type R

§ Plus several more

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 32

The iterable Interface

§ One method, forEach()
–  Parameter is a Consumer

§ Replace with reduce or collect where possible
–  forEach is not thread safe, and cannot be made parallel

Used by most collections

wordList.forEach(System.out::println); // OK

List<T> l = ...
s.map(λ).forEach(e -> l.add(e));

 Replace with
List<T> l = s.map(λ).collect(Collectors.toList());

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 33

Maps and FlatMaps

§ One-to-one mapping
–  <R> Stream<R> map(Function<? super T, ? extends R> mapper)
–  mapToDouble, mapToInt, mapToLong

§ One-to-many mapping
–  <R> Stream<R> flatMap(
 Function<? super T, ? extends Stream<? extends R> mapper)

–  flatMapToDouble, flatMapToInt, flatMapToLong

Map Values in a Stream

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 34

Example 1
Convert words in list to upper case

List<String> output = wordList.
 stream().
 map(String::toUpperCase).
 collect(Collectors.toList());

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 35

Example 2
Find words in list with even length

List<String> output = wordList.
 stream().
 filter(w -> (w.length() & 1 == 0).
 collect(Collectors.toList());

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 36

Example 3

§ BufferedReader has new method
–  Stream<String> lines()

Count lines in a file

long count = bufferedReader.
 lines().
 count();

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 37

Example 4
Join lines 3-4 into a single string

String output = bufferedReader.
 lines().
 skip(2).
 limit(2).
 collect(Collectors.joining());

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 38

Example 5
Find the length of the longest line in a file

int longest = reader.
 lines().
 mapToInt(String::length).
 max().
 getAsInt();

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 39

Example 6
Collect all words in a file into a list

List<String> output = reader.
 lines().
 flatMap(line -> Stream.of(line.split(REGEXP))).
 filter(word -> word.length() > 0).
 collect(Collectors.toList());

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 40

Example 7
List of words lowercased, in aphabetical order

List<String> output = reader.
 lines().
 flatMap(line -> Stream.of(line.split(REGEXP))).
 filter(word -> word.length() > 0).
 map(String::toLowerCase).
 sorted().
 collect(Collectors.toList());

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 41

Conclusions

§  Java needs lambda statements
–  Significant improvements in existing libraries are required

§ Require a mechanism for interface evolution
–  Solution: virtual extension methods

§ Bulk operations on Collections
–  Much simpler with Lambdas

§  Java SE 8 evolves the language, libraries, and VM together

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 42

