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Early guy, Amazon EC2
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Director of Engineering
Microsoft Edge Computing Network
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http://dlutzy.wordpress.com/2011/06/16/velocity-2011-day-1/

CTO
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Agenda

• What is Chef

• from an implementor’s perspective?

• Why Ruby and Erlang?

• Porting the server from Ruby to Erlang
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“Chef is like a little system admin 
robot... you tell it how you want your 
system configured and it will do all the 
dirty work.”
- Probably Interactive

What is Chef?
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• Code Repository

• Chef Server

• Chef Clients

• Data Bags

• Recipes and Cookbooks

• Roles and Run Lists

Architecture
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• Recipes contain lists 
of resources evaluated 
in order

package "haproxy" do
  action :install
end

template "/etc/default/haproxy" do
  source "haproxy-default.erb"
  owner "root"
  group "root"
  mode 0644
  notifies :restart, 
"service[haproxy]"
end

service "haproxy" do
  action [:enable, :start]
end

Recipe
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Resource

• Have a type

• Have a name

• Have parameters

• Take action to put the 
resource in the 
declared state

package "apache2" do
  version "2.2.11-2ubuntu2.6"
  action :install
end

template "/etc/apache2/
apache2.conf" do
  source "apache2.conf.erb"
  owner "root"
  group "root"
  mode 0644
  action :create
end
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What is Chef?

• Client Side Tools

• command line

• convergence engine

• Server API Implementation

• publishing platform

• scalable web service

• fault tolerant

...from an implementor’s perspective

Wednesday, January 9, 13



Client Design Goals

• easy to create command line tools

• easy to hack on (we’ve got a big open source 
community which is very important to us)

• startup time / resource consumption secondary

• nearly ubiquitous platform support (wide and 
deep)

• metaprogramming / internal / external DSL 
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Languages to consider

• JVM

• Java

• Clojure

• Scala

• Perl

• OCaml / ML

• Haskell

• Scheme / Lisp

...on the client
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Goals of a 
DSL

• Translate Domain expertise to language of 
implementation

• Reduce syntactic / cognitive load
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External vs 
Internal DSL

• Problem: How much of the original language do 
you carry along?

• What standard language constructs are necessary?

• Are they easy to understand / teach your DSL 
users?

• Cost of creating & maintaining grammar parser, 
etc.
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http://mitpress.mit.edu/sicp/

“SICP”

Lisp in Small Pieces

Metaprogramming Ruby
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All I see are blondes, brunettes 
and redheads...
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Internal DSL

• Exploit Metaprogramming

• Heritage of Lisp, Smalltalk, Ruby

• Requires Flexible syntax

• May inherit types, data structures
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External DSL

• You are responsible for grammar

• Lex / Yacc / ANTLR

• You are responsible for types, data 
structures and execution
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http://www.javaworld.com/javaworld/jw-06-2008/jw-06-dsls-in-java-1.html

Java?

http://ola-bini.blogspot.com/2008/01/language-explorations.html

“I think I realized a long time ago 
that Java is not a good enough 
language to implement 
applications.”
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XML?
<?xml	  version="1.0"	  encoding="UTF-‐8"?>
<!-‐-‐	  generated	  by	  N1	  SPS	  -‐-‐>
<component	  label='1.0.0'	  xmlns='http://www.sun.com/schema/SPS'	  name='tuxedo81.cont'	  version='5.1'	  description='For	  deploying	  
tuxedo81	  domain	  for	  ocsccm	  1.0.0'	  xmlns:xsi='http://www.w3.org/2001/XMLSchema-‐instance'	  path='/ocs/ccm/1.0'	  
xsi:schemaLocation='http://www.sun.com/schema/SPS	  component.xsd'>
	   <extends>
	   	   <type	  name='system#container'></type>
	   </extends>
	   <varList>
	   	   <var	  name='execUser'	  default=':[target:execUser]'></var>
	   	   <var	  name='execGroup'	  default=':[target:execGroup]'></var>
	   	   <var	  name='installRoot'	  default=':[target:installRoot]'></var>
	   	   <var	  name='installPath'	  default=':[target:installRoot]'></var>
	   	   <var	  name='platform'	  default=':[target:platform]'></var>
	   	   <var	  name='platformPath'	  default=':[installRoot]/:[platform]'></var>
	   	   <var	  name='environment'	  default=':[target:environment]'></var>
	   	   <var	  name='environmentPath'	  default=':[platformPath]/:[environment]'></var>
	   </varList>
	   <componentRefList>
	   	   <componentRef	  name='deploy_tuxedo81_dir'>
	   	   	   <argList	  installPath=':[installRoot]'	  installGroup=':[execGroup]'	  installDiffDeploy='FALSE'	  installPermissions='754'	  
installName='tuxedo81'	  installUser=':[execUser]'	  installDeployMode='REPLACE'></argList>
	   	   	   <component	  name='tuxedo81'	  path='/ocs/ccm/1.0/components'	  version='1.2'></component>
	   	   </componentRef>
	   </componentRefList>
	   <installList>
	   	   <installSteps	  name='default'>
	   	   	   <install	  blockName='default'>
	   	   	   	   <allNestedRefs></allNestedRefs>
	   	   	   </install>
	   	   	   <execNative	  userToRunAs='root'>
	   	   	   	   <inputText><![CDATA[
#cd	  :[installRoot]
#find	  :[platform]	  -‐type	  d	  -‐print	  |	  xargs	  chown	  -‐R	  :[execUser]::[execGroup]
	  	  	  	  	  	  	  	  ]]></inputText>
	   	   	   	   <exec	  cmd='sh'></exec>
	   	   	   </execNative>
	   	   </installSteps>
	   </installList>
</component>
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#!/usr/bin/env escript
%% -*- erlang -*-
%%! -smp enable -sname factorial -mnesia debug verbose
main([String]) ->
    try
        N = list_to_integer(String),
        F = fac(N),
        io:format("factorial ~w = ~w\n", [N,F])
    catch
        _:_ ->
            usage()
    end;
main(_) ->
    usage().

usage() ->
    io:format("usage: factorial integer\n"),
    halt(1).

Erlang?

Wednesday, January 9, 13



use Chef;

resource file => '/tmp/foo', sub {
  my $r = shift;
  $r->owner('adam');
  $r->action('create');
};

Perl?
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(require 'chef)

(resource :file "/tmp/foo"
          :owner "cb"
          :action :create)

(resource :file (concatenate 'string 
                             "/tmp/" 
                             (node-attributes :hostname) 
                             "-made-with-lisp")
          :action :create)

;; or

(file :path "/tmp/foo"
      :owner "cb"
      :action :create)

(file :path (concatenate 'string 
                         "/tmp/" 
                         (node-attributes :hostname) 
                         "-made-with-lisp")
      :action :create)

Common Lisp?
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Server Design Goals

• Horizontally scalable

• Highly concurrent

• Stateless request handling

• Fault tolerant
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Languages to consider

• JVM

• Java

• Clojure

• Scala

• Perl

• OCaml / ML

• Haskell

• Scheme / Lisp

...on the server
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• Merb, Ruby, Unicorn, Nginx

• Stateless, horizontally scalable

• Talks to

• CouchDB,

• authorization service (Erlang),

• Solr

Chef Server API
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1. User public key for authentication

2. Node data from CouchDB (median 
22K, 3rd Qu. 44K)

3. Authorization check

4. POST, GET, PUT, DELETE

Typical Chef Server API Request 
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Average Chef Server API Response Times

500 ms
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Slow, Irregular, and 
Out of Control

CTO
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CouchDB Uptime
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Heavy on system resources

Wednesday, January 9, 13



How much RAM 
should it use?
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60 req/sec × 44K = 
2.7MB
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2.7MB data + code 
+ copies...

27MB?
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100MB
at rest, after startup
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Concurrency?
One request per 

worker.
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204 MB
per unicorn worker

under load
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12 workers per server
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8 servers
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12 × 204 MB = 2.4 
GB

8 × 2.4 GB =

for pulling JSON out of a database and returning it

19.2 GB
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Unicorns Eat RAM
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How did we do?
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Erlang Ruby

idle 19MB 100MB

loaded 75MB 204MB
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Erlang Ruby

600MB 19.2GB
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We win!
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But wait! There’s more.
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Where is Ruby API 
spending time?
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DB calls?
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JSON parsing/
rendering?
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Crypto?
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Garbage Collection?
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Garbage Collection!
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>40% CPU in GC
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CPU Usage on Chef Server
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Frequent GET/
PUT of node JSON
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compaction
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No concurrency accessing a 
single database

 (until recently)
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Database replication 
unreliable for 1000s 

of databases.

Motivation: Why not CouchDB?
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File handle and 
memory resource 

leaks

Motivation: Why not CouchDB?
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It became an 
operations “thing”

Motivation: Why not CouchDB?
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What we need in a data 
store

• Happy with write heavy load

• Support for sophisticated queries

• Able to run HA

Wednesday, January 9, 13



Did you consider 
NoSQL database X?
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Yes, but we also asked:
Why not SQL?
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Measure!

basho_bench
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So we replaced 
CouchDB with MySQL
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...while the system was running
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Live Migration:
Starts out easy!
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Live Migration in 3 Easy 
Steps 

1.Put org into read-only 
mode

2.Copy from CouchDB to 
MySQL

3.Route org to Erchef
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It Gets Harder
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Real World 
Hard
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Migration Tool  

1. Coordinate feature flippers and 
load balancer config 

2. Move batches of orgs through 
migration

3. Track status of migration and 
individual orgs

4. Resume after crash
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Migration Tool  
1. Track inflight write requests

2. Put org into read-only mode

3. Wait for inflight write requests to 
complete

4. Migrate org data

5. Reconfig/HUP load balancer

6. Handle errors
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Scripting with gen_fsm

• Helper methods → states

• Server state and supervision tree make crash 
recovery easier

• Free REPL
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OTP + gen_fsm =:= Happy Migration Tool

Organization Robustness

state functions ✔

state record ✔ ✔

manager/worker processes ✔ ✔

supervision tree ✔

DETS local store ✔
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No migration plan survives 
contact with production

http://en.wikiquote.org/wiki/Helmuth_von_Moltke_the_Elder
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Database CPU
CouchDB MySQL
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Database Load Average
CouchDB MySQL
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API Average Latency
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Chef Server Roles 
Endpoint 90th Latency
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Database  Memory 
CouchDB MySQL
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CouchDB Write 
Requests
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CouchDB Network 
Traffic
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Network traffic on 
Chef Server
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The Road Ahead?
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