
Christopher Brown
Chief Technology Officer

Twitter: @skeptomai, Email: cb@opscode.com

Living in a Polyglot World
Ruby on the Client, Erlang on the Server

Wednesday, January 9, 13

mailto:adam@opscode.com
mailto:adam@opscode.com

Copyright © 2010 Opscode, Inc - All Rights Reserved 2

Early guy, Amazon EC2

Wednesday, January 9, 13

Copyright © 2010 Opscode, Inc - All Rights Reserved 3

Director of Engineering
Microsoft Edge Computing Network

Wednesday, January 9, 13

Copyright © 2010 Opscode, Inc - All Rights Reserved 4

http://dlutzy.wordpress.com/2011/06/16/velocity-2011-day-1/

CTO

Wednesday, January 9, 13

http://dlutzy.wordpress.com/2011/06/16/velocity-2011-day-1/
http://dlutzy.wordpress.com/2011/06/16/velocity-2011-day-1/

Agenda

• What is Chef

• from an implementor’s perspective?

• Why Ruby and Erlang?

• Porting the server from Ruby to Erlang

Wednesday, January 9, 13

“Chef is like a little system admin
robot... you tell it how you want your
system configured and it will do all the
dirty work.”
- Probably Interactive

What is Chef?

Wednesday, January 9, 13

• Code Repository

• Chef Server

• Chef Clients

• Data Bags

• Recipes and Cookbooks

• Roles and Run Lists

Architecture

Wednesday, January 9, 13

• Recipes contain lists
of resources evaluated
in order

package "haproxy" do
 action :install
end

template "/etc/default/haproxy" do
 source "haproxy-default.erb"
 owner "root"
 group "root"
 mode 0644
 notifies :restart,
"service[haproxy]"
end

service "haproxy" do
 action [:enable, :start]
end

Recipe

Wednesday, January 9, 13

Resource

• Have a type

• Have a name

• Have parameters

• Take action to put the
resource in the
declared state

package "apache2" do
 version "2.2.11-2ubuntu2.6"
 action :install
end

template "/etc/apache2/
apache2.conf" do
 source "apache2.conf.erb"
 owner "root"
 group "root"
 mode 0644
 action :create
end

Wednesday, January 9, 13

What is Chef?

• Client Side Tools

• command line

• convergence engine

• Server API Implementation

• publishing platform

• scalable web service

• fault tolerant

...from an implementor’s perspective

Wednesday, January 9, 13

Client Design Goals

• easy to create command line tools

• easy to hack on (we’ve got a big open source
community which is very important to us)

• startup time / resource consumption secondary

• nearly ubiquitous platform support (wide and
deep)

• metaprogramming / internal / external DSL

Wednesday, January 9, 13

Languages to consider

• JVM

• Java

• Clojure

• Scala

• Perl

• OCaml / ML

• Haskell

• Scheme / Lisp

...on the client

Wednesday, January 9, 13

Goals of a
DSL

• Translate Domain expertise to language of
implementation

• Reduce syntactic / cognitive load

Wednesday, January 9, 13

External vs
Internal DSL

• Problem: How much of the original language do
you carry along?

• What standard language constructs are necessary?

• Are they easy to understand / teach your DSL
users?

• Cost of creating & maintaining grammar parser,
etc.

Wednesday, January 9, 13

http://mitpress.mit.edu/sicp/

“SICP”

Lisp in Small Pieces

Metaprogramming Ruby

Wednesday, January 9, 13

http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/

All I see are blondes, brunettes
and redheads...

Wednesday, January 9, 13

Internal DSL

• Exploit Metaprogramming

• Heritage of Lisp, Smalltalk, Ruby

• Requires Flexible syntax

• May inherit types, data structures

Wednesday, January 9, 13

External DSL

• You are responsible for grammar

• Lex / Yacc / ANTLR

• You are responsible for types, data
structures and execution

Wednesday, January 9, 13

http://www.javaworld.com/javaworld/jw-06-2008/jw-06-dsls-in-java-1.html

Java?

http://ola-bini.blogspot.com/2008/01/language-explorations.html

“I think I realized a long time ago
that Java is not a good enough
language to implement
applications.”

Wednesday, January 9, 13

http://www.javaworld.com/javaworld/jw-06-2008/jw-06-dsls-in-java-1.html
http://www.javaworld.com/javaworld/jw-06-2008/jw-06-dsls-in-java-1.html
http://ola-bini.blogspot.com/2008/01/language-explorations.html
http://ola-bini.blogspot.com/2008/01/language-explorations.html

XML?
<?xml	 version="1.0"	 encoding="UTF-‐8"?>
<!-‐-‐	 generated	 by	 N1	 SPS	 -‐-‐>
<component	 label='1.0.0'	 xmlns='http://www.sun.com/schema/SPS'	 name='tuxedo81.cont'	 version='5.1'	 description='For	 deploying	
tuxedo81	 domain	 for	 ocsccm	 1.0.0'	 xmlns:xsi='http://www.w3.org/2001/XMLSchema-‐instance'	 path='/ocs/ccm/1.0'	
xsi:schemaLocation='http://www.sun.com/schema/SPS	 component.xsd'>
	 <extends>
	 	 <type	 name='system#container'></type>
	 </extends>
	 <varList>
	 	 <var	 name='execUser'	 default=':[target:execUser]'></var>
	 	 <var	 name='execGroup'	 default=':[target:execGroup]'></var>
	 	 <var	 name='installRoot'	 default=':[target:installRoot]'></var>
	 	 <var	 name='installPath'	 default=':[target:installRoot]'></var>
	 	 <var	 name='platform'	 default=':[target:platform]'></var>
	 	 <var	 name='platformPath'	 default=':[installRoot]/:[platform]'></var>
	 	 <var	 name='environment'	 default=':[target:environment]'></var>
	 	 <var	 name='environmentPath'	 default=':[platformPath]/:[environment]'></var>
	 </varList>
	 <componentRefList>
	 	 <componentRef	 name='deploy_tuxedo81_dir'>
	 	 	 <argList	 installPath=':[installRoot]'	 installGroup=':[execGroup]'	 installDiffDeploy='FALSE'	 installPermissions='754'	
installName='tuxedo81'	 installUser=':[execUser]'	 installDeployMode='REPLACE'></argList>
	 	 	 <component	 name='tuxedo81'	 path='/ocs/ccm/1.0/components'	 version='1.2'></component>
	 	 </componentRef>
	 </componentRefList>
	 <installList>
	 	 <installSteps	 name='default'>
	 	 	 <install	 blockName='default'>
	 	 	 	 <allNestedRefs></allNestedRefs>
	 	 	 </install>
	 	 	 <execNative	 userToRunAs='root'>
	 	 	 	 <inputText><![CDATA[
#cd	 :[installRoot]
#find	 :[platform]	 -‐type	 d	 -‐print	 |	 xargs	 chown	 -‐R	 :[execUser]::[execGroup]
]]></inputText>
	 	 	 	 <exec	 cmd='sh'></exec>
	 	 	 </execNative>
	 	 </installSteps>
	 </installList>
</component>

Wednesday, January 9, 13

http://www.sun.com/schema/SPS'
http://www.sun.com/schema/SPS'

#!/usr/bin/env escript
%% -*- erlang -*-
%%! -smp enable -sname factorial -mnesia debug verbose
main([String]) ->
 try
 N = list_to_integer(String),
 F = fac(N),
 io:format("factorial ~w = ~w\n", [N,F])
 catch
 : ->
 usage()
 end;
main(_) ->
 usage().

usage() ->
 io:format("usage: factorial integer\n"),
 halt(1).

Erlang?

Wednesday, January 9, 13

use Chef;

resource file => '/tmp/foo', sub {
 my $r = shift;
 $r->owner('adam');
 $r->action('create');
};

Perl?

Wednesday, January 9, 13

(require 'chef)

(resource :file "/tmp/foo"
 :owner "cb"
 :action :create)

(resource :file (concatenate 'string
 "/tmp/"
 (node-attributes :hostname)
 "-made-with-lisp")
 :action :create)

;; or

(file :path "/tmp/foo"
 :owner "cb"
 :action :create)

(file :path (concatenate 'string
 "/tmp/"
 (node-attributes :hostname)
 "-made-with-lisp")
 :action :create)

Common Lisp?

Wednesday, January 9, 13

Server Design Goals

• Horizontally scalable

• Highly concurrent

• Stateless request handling

• Fault tolerant

Wednesday, January 9, 13

Languages to consider

• JVM

• Java

• Clojure

• Scala

• Perl

• OCaml / ML

• Haskell

• Scheme / Lisp

...on the server

Wednesday, January 9, 13

• Merb, Ruby, Unicorn, Nginx

• Stateless, horizontally scalable

• Talks to

• CouchDB,

• authorization service (Erlang),

• Solr

Chef Server API

Wednesday, January 9, 13

1. User public key for authentication

2. Node data from CouchDB (median
22K, 3rd Qu. 44K)

3. Authorization check

4. POST, GET, PUT, DELETE

Typical Chef Server API Request

Wednesday, January 9, 13

Average Chef Server API Response Times

500 ms

Wednesday, January 9, 13

Slow, Irregular, and
Out of Control

CTO

Wednesday, January 9, 13

CouchDB Uptime

Wednesday, January 9, 13

Heavy on system resources

Wednesday, January 9, 13

How much RAM
should it use?

Wednesday, January 9, 13

60 req/sec × 44K =
2.7MB

Wednesday, January 9, 13

2.7MB data + code
+ copies...

27MB?

Wednesday, January 9, 13

100MB
at rest, after startup

Wednesday, January 9, 13

Concurrency?
One request per

worker.

Wednesday, January 9, 13

204 MB
per unicorn worker

under load

Wednesday, January 9, 13

12 workers per server

Wednesday, January 9, 13

8 servers

Wednesday, January 9, 13

12 × 204 MB = 2.4
GB

8 × 2.4 GB =

for pulling JSON out of a database and returning it

19.2 GB

Wednesday, January 9, 13

Unicorns Eat RAM

Wednesday, January 9, 13

Wednesday, January 9, 13

Wednesday, January 9, 13

How did we do?

Wednesday, January 9, 13

Erlang Ruby

idle 19MB 100MB

loaded 75MB 204MB

Wednesday, January 9, 13

Erlang Ruby

600MB 19.2GB

Wednesday, January 9, 13

We win!

Wednesday, January 9, 13

But wait! There’s more.

Wednesday, January 9, 13

Where is Ruby API
spending time?

Wednesday, January 9, 13

DB calls?

Wednesday, January 9, 13

JSON parsing/
rendering?

Wednesday, January 9, 13

Crypto?

Wednesday, January 9, 13

Garbage Collection?

Wednesday, January 9, 13

Garbage Collection!

Wednesday, January 9, 13

Wednesday, January 9, 13

>40% CPU in GC

Wednesday, January 9, 13

CPU Usage on Chef Server

Wednesday, January 9, 13

Wednesday, January 9, 13

Frequent GET/
PUT of node JSON

Wednesday, January 9, 13

compaction

Wednesday, January 9, 13

No concurrency accessing a
single database

 (until recently)
Wednesday, January 9, 13

Database replication
unreliable for 1000s

of databases.

Motivation: Why not CouchDB?

Wednesday, January 9, 13

File handle and
memory resource

leaks

Motivation: Why not CouchDB?

Wednesday, January 9, 13

It became an
operations “thing”

Motivation: Why not CouchDB?

Wednesday, January 9, 13

What we need in a data
store

• Happy with write heavy load

• Support for sophisticated queries

• Able to run HA

Wednesday, January 9, 13

Did you consider
NoSQL database X?

Wednesday, January 9, 13

Yes, but we also asked:
Why not SQL?

Wednesday, January 9, 13

Measure!

basho_bench

Wednesday, January 9, 13

So we replaced
CouchDB with MySQL

Wednesday, January 9, 13

...while the system was running

Wednesday, January 9, 13

Live Migration:
Starts out easy!

Wednesday, January 9, 13

Live Migration in 3 Easy
Steps

1.Put org into read-only
mode

2.Copy from CouchDB to
MySQL

3.Route org to Erchef

Wednesday, January 9, 13

It Gets Harder

Wednesday, January 9, 13

Real World
Hard

Wednesday, January 9, 13

Migration Tool

1. Coordinate feature flippers and
load balancer config

2. Move batches of orgs through
migration

3. Track status of migration and
individual orgs

4. Resume after crash

Wednesday, January 9, 13

Migration Tool
1. Track inflight write requests

2. Put org into read-only mode

3. Wait for inflight write requests to
complete

4. Migrate org data

5. Reconfig/HUP load balancer

6. Handle errors

Wednesday, January 9, 13

Scripting with gen_fsm

• Helper methods → states

• Server state and supervision tree make crash
recovery easier

• Free REPL

Wednesday, January 9, 13

OTP + gen_fsm =:= Happy Migration Tool

Organization Robustness

state functions ✔

state record ✔ ✔

manager/worker processes ✔ ✔

supervision tree ✔

DETS local store ✔

Wednesday, January 9, 13

No migration plan survives
contact with production

http://en.wikiquote.org/wiki/Helmuth_von_Moltke_the_Elder

Wednesday, January 9, 13

http://en.wikiquote.org/wiki/Helmuth_von_Moltke_the_Elder
http://en.wikiquote.org/wiki/Helmuth_von_Moltke_the_Elder

Database CPU
CouchDB MySQL

Wednesday, January 9, 13

Database Load Average
CouchDB MySQL

Wednesday, January 9, 13

API Average Latency

Wednesday, January 9, 13

Chef Server Roles
Endpoint 90th Latency

Wednesday, January 9, 13

Database Memory
CouchDB MySQL

Wednesday, January 9, 13

CouchDB Write
Requests

Wednesday, January 9, 13

CouchDB Network
Traffic

Wednesday, January 9, 13

Network traffic on
Chef Server

Wednesday, January 9, 13

Copyright © 2010 Opscode, Inc - All Rights Reserved 88

The Road Ahead?

Wednesday, January 9, 13

Christopher Brown
Chief Technical Officer

Twitter: @skeptomai, Email: cb@opscode.com

Wednesday, January 9, 13

mailto:adam@opscode.com
mailto:adam@opscode.com

