
Beyond	
MapReduce

TechMesh	 London	 2012
December	 5,	 2012
dean.wampler@thinkbiganalyCcs.com
@deanwampler	
polyglotprogramming.com/talks

Tuesday, December 4, 12

On my website, this talk is called “MapReduce and Its Discontents”.
MR has been a useful technology, but it has a “first generation” feel. What’s next?

(All photos are © Dean Wampler, 2011-2012, All Rights Reserved. Otherwise, the
presentation is free to use.)

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:dean.wampler@thinkbiganalytics.com
mailto:dean.wampler@thinkbiganalytics.com
https://twitter.com/deanwampler
https://twitter.com/deanwampler
http://polyglotprogramming.com/talks
http://polyglotprogramming.com/talks

About	 Me...
dean.wampler@thinkbiganalyCcs.com
@deanwampler

Dean Wampler,
 Jason Rutherglen &

 Edward Capriolo

Hive
Programming

Dean Wampler

Functional
Programming

for Java Developers

Tuesday, December 4, 12

My books and contact information.

https://twitter.com/deanwampler
https://twitter.com/deanwampler
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/9780596155964.do
http://shop.oreilly.com/product/9780596155964.do
http://shop.oreilly.com/product/9780596155964.do
http://thinkbiganalytics.com
http://thinkbiganalytics.com

Big	 Data
Data	 so	 big	 that	

tradiConal	 soluCons	 are	
too	 slow,	 too	 small,	 or	
too	 expensive	 to	 use.

3 Hat tip: Bob Korbus

Tuesday, December 4, 12

It’s a buzz word, but generally associated with the problem of data sets too big to manage
with traditional SQL databases. A parallel development has been the NoSQL movement that is
good at handling semistructured data, scaling, etc.

4

3	 Trends

Tuesday, December 4, 12
Three trends influence my thinking...

5

Data	 Size	 ⬆

Tuesday, December 4, 12
Data volumes are obviously growing… rapidly.
Facebook now has over 600PB (Petabytes) of data in Hadoop clusters!

6

Formal	 Schemas	 ⬇

Tuesday, December 4, 12
There is less emphasis on “formal” schemas and domain models, i.e., both relational models of data and OO models, because data schemas and
sources change rapidly, and we need to integrate so many disparate sources of data. So, using relatively-agnostic software, e.g., collections of
things where the software is more agnostic about the structure of the data and the domain, tends to be faster to develop, test, and deploy. Put
another way, we find it more useful to build somewhat agnostic applications and drive their behavior through data...

7

Data-‐Driven	 Programs	 ⬆

Tuesday, December 4, 12
This is the 2nd generation “Stanley”, the most successful self-driving car ever built (by a Google-Stanford) team. Machine learning is growing in
importance. Here, generic algorithms and data structures are trained to represent the “world” using data, rather than encoding a model of the
world in the software itself. It’s another example of generic algorithms that produce the desired behavior by being application agnostic and data
driven, rather than hard-coding a model of the world. (In practice, however, a balance is struck between completely agnostic apps and some
engineering towards for the specific problem, as you might expect...)

8

Big	 Data
Architecture

Tuesday, December 4, 12
What should software architectures look like for these kinds of systems?

9

Object Model

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2 Object-

Relational
Mapping

Other, Object-
Oriented

Domain Logic

Database

Query
SQL

Result Set

Objects
1

2

3

4

5

Tuesday, December 4, 12
Traditionally, we’ve kept a rich, in-memory domain model requiring an ORM to convert persistent data into the model. This is resource overhead and complexity we can’t afford in big data
systems. Rather, we should treat the result set as it is, a particular kind of collection, do the minimal transformation required to exploit our collections libraries and classes representing some
domain concepts (e.g., Address, StockOption, etc.), then write functional code to implement business logic (or drive emergent behavior with machine learning algorithms…)

The toJSON methods are there because we often convert these object graphs back into fundamental structures, such as the maps and arrays of JSON so we can send them to the browser!

10

Object Model

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2 Object-

Relational
Mapping

Other, Object-
Oriented

Domain Logic

Database

Query
SQL

Result Set

Objects
1

2

3

4

5

Relational/
Functional

Domain Logic

Database

Query

SQL

Result Set

1

2

Functional
Wrapper for

Relational Data

3

Functional
Abstractions

4

Tuesday, December 4, 12
But the traditional systems are a poor fit for this new world: 1) they add too much overhead in computation (the ORM layer, etc.) and memory (to store the objects). Most of what we do with
data is mathematical transformation, so we’re far more productive (and runtime efficient) if we embrace fundamental data structures used throughout (lists, sets, maps, trees) and build rich
transformations into those libraries, transformations that are composable to implement business logic.

11

• Focus on:

• Lists

• Maps

• Sets

• Trees

• ...

Relational/
Functional

Domain Logic

Database

Query

SQL

Result Set

1

2

Functional
Wrapper for

Relational Data

3

Functional
Abstractions

4

Tuesday, December 4, 12
But the traditional systems are a poor fit for this new world: 1) they add too much overhead in computation (the ORM layer, etc.) and memory (to store the objects). Most of what we do with
data is mathematical transformation, so we’re far more productive (and runtime efficient) if we embrace fundamental data structures used throughout (lists, sets, maps, trees) and build rich
transformations into those libraries, transformations that are composable to implement business logic.

12

methods
ParentB1

methods
ChildB1

methods
ChildB2

Web Client 1 Web Client 2 Web Client 3

FilesDatabase

Tuesday, December 4, 12
In a broader view, object models tend to push us towards centralized, complex systems that don’t decompose well and stifle reuse and optimal deployment scenarios. FP code makes it
easier to write smaller, focused services that we compose and deploy as appropriate.

13

Web Client 1 Web Client 2 Web Client 3

Process 1 Process 2 Process 3

FilesDatabase

methods
ParentB1

methods
ChildB1

methods
ChildB2

Web Client 1 Web Client 2 Web Client 3

FilesDatabase

Tuesday, December 4, 12
In a broader view, object models tend to push us towards centralized, complex systems that don’t decompose well and stifle reuse and optimal deployment scenarios. FP code makes it
easier to write smaller, focused services that we compose and deploy as appropriate. Each “ProcessN” could be a parallel copy of another process, for horizontal, “shared-nothing”
scalability, or some of these processes could be other services…
Smaller, focused services scale better, especially horizontally. They also don’t encapsulate more business logic than is required, and this (informal) architecture is also suitable for scaling
ML and related algorithms.

14

• Data Size ⬆

• Formal
Schema ⬇

• Data-Driven
Programs ⬆

Web Client 1 Web Client 2 Web Client 3

Process 1 Process 2 Process 3

FilesDatabase

Tuesday, December 4, 12
And this structure better fits the trends I outlined at the beginning of the talk.

15

• MapReduce

• Distributed FS

Web Client 1 Web Client 2 Web Client 3

Process 1 Process 2 Process 3

FilesDatabase

Tuesday, December 4, 12
And MapReduce + a distributed file system, like Hadoop’s MapReduce and HDFS, fit this model.

16

What	 Is
MapReduce?

Tuesday, December 4, 12

MapReduce	 in	 Hadoop

Let’s	 look	 at	 a	
MapReduce	 algorithm:	

WordCount.
(The	 Hello	 World	 of	 MapReduce…)

Tuesday, December 4, 12
Let’s walk through the “Hello World” of MapReduce, the Word Count algorithm, at a conceptual level. We’ll see actual code shortly!

Copyright	 ©	 2011-‐2012,	 Think	 Big	 AnalyCcs,	 All	 Rights	 Reserved

There is a
Map phase

Hadoop uses
MapReduce

Input Mappers Sort,
Shuffle

Reducers

map 1
mapreduce 1
phase 2

a 2
hadoop 1
is 2

Output

There is a
Reduce phase

reduce 1
there 2
uses 1

We	 need	 to	 convert	
the	 Input	

into	 the	 Output.

Tuesday, December 4, 12

Four input documents, one left empty, the others with small phrases (for simplicity…). The word count
output is on the right (we’ll see why there are three output “documents”). We need to get from the input
on the left-hand side to the output on the right-hand side.

Copyright	 ©	 2011-‐2012,	 Think	 Big	 AnalyCcs,	 All	 Rights	 Reserved

There is a
Map phase

Hadoop uses
MapReduce

Input Mappers Sort,
Shuffle

Reducers

map 1
mapreduce 1
phase 2

a 2
hadoop 1
is 2

Output

There is a
Reduce phase

reduce 1
there 2
uses 1

Tuesday, December 4, 12

Here is a schematic view of the steps in Hadoop MapReduce. Each Input file is read by a single
Mapper process (default: can be many-to-many, as we’ll see later).
The Mappers emit key-value pairs that will be sorted, then partitioned and “shuffled” to the reducers,
where each Reducer will get all instances of a given key (for 1 or more values).
Each Reducer generates the final key-value pairs and writes them to one or more files (based on the
size of the output).

Copyright	 ©	 2011-‐2012,	 Think	 Big	 AnalyCcs,	 All	 Rights	 Reserved

There is a
Map phase

Hadoop uses
MapReduce

Input

(n, "…")

(n, "…")

(n, "")

Mappers

There is a
Reduce phase (n, "…")

Tuesday, December 4, 12

Each document gets a mapper. All data is organized into key-value pairs; each line will be a
value and the offset position into the file will be the key, which we don’t care about. I’m
showing each document’s contents in a box and 1 mapper task (JVM process) per document.
Large documents might get split to several mapper tasks.
The mappers tokenize each line, one at a time, converting all words to lower case and
counting them...

Copyright	 ©	 2011-‐2012,	 Think	 Big	 AnalyCcs,	 All	 Rights	 Reserved

There is a
Map phase

Hadoop uses
MapReduce

Input

(n, "…")

(n, "…")

(n, "")

Mappers

There is a
Reduce phase (n, "…")

(hadoop, 1)
(uses, 1)
(mapreduce, 1)

(there, 1)
(is, 1)
(a, 1)
(reduce, 1)
(phase, 1)

(there, 1)
(is, 1)
(a, 1)
(map, 1)
(phase, 1)

Tuesday, December 4, 12

The mappers emit key-value pairs, where each key is one of the words, and the value is the
count. In the most naive (but also most memory efficient) implementation, each mapper
simply emits (word, 1) each time “word” is seen. However, this is IO inefficient!
Note that the mapper for the empty doc. emits no pairs, as you would expect.

Copyright	 ©	 2011-‐2012,	 Think	 Big	 AnalyCcs,	 All	 Rights	 Reserved

There is a
Map phase

Hadoop uses
MapReduce

Input

(n, "…")

(n, "…")

(n, "")

Mappers Sort,
Shuffle

Reducers

There is a
Reduce phase (n, "…")

(hadoop, 1)

(uses, 1)
(mapreduce, 1)

(is, 1), (a, 1)

(there, 1)

(there, 1),
(reduce, 1)

(phase,1)

(map, 1),(phase,1)

(is, 1), (a, 1)

0-9, a-l

m-q

r-z

Tuesday, December 4, 12

The mappers themselves don’t decide to which reducer each pair should be sent. Rather, the
job setup configures what to do and the Hadoop runtime enforces it during the Sort/Shuffle
phase, where the key-value pairs in each mapper are sorted by key (that is locally, not
globally) and then the pairs are routed to the correct reducer, on the current machine or
other machines.
Note how we partitioned the reducers, by first letter of the keys. (By default, MR just hashes
the keys and distributes them modulo # of reducers.)

Copyright	 ©	 2011-‐2012,	 Think	 Big	 AnalyCcs,	 All	 Rights	 Reserved

There is a
Map phase

Hadoop uses
MapReduce

Input

(n, "…")

(n, "…")

(n, "")

Mappers Sort,
Shuffle

(a, [1,1]),
(hadoop, [1]),

(is, [1,1])

(map, [1]),
(mapreduce, [1]),

(phase, [1,1])

Reducers

There is a
Reduce phase (n, "…")

(reduce, [1]),
(there, [1,1]),

(uses, 1)

(hadoop, 1)

(uses, 1)
(mapreduce, 1)

(is, 1), (a, 1)

(there, 1)

(there, 1),
(reduce, 1)

(phase,1)

(map, 1),(phase,1)

(is, 1), (a, 1)

0-9, a-l

m-q

r-z

Tuesday, December 4, 12

The reducers are passed each key (word) and a collection of all the values for that key (the
individual counts emitted by the mapper tasks). The MR framework creates these collections
for us.

Copyright	 ©	 2011-‐2012,	 Think	 Big	 AnalyCcs,	 All	 Rights	 Reserved

There is a
Map phase

Hadoop uses
MapReduce

Input

(n, "…")

(n, "…")

(n, "")

Mappers Sort,
Shuffle

(a, [1,1]),
(hadoop, [1]),

(is, [1,1])

(map, [1]),
(mapreduce, [1]),

(phase, [1,1])

Reducers

There is a
Reduce phase (n, "…")

(reduce, [1]),
(there, [1,1]),

(uses, 1)

(hadoop, 1)

(uses, 1)
(mapreduce, 1)

(is, 1), (a, 1)

(there, 1)

(there, 1),
(reduce, 1)

(phase,1)

(map, 1),(phase,1)

(is, 1), (a, 1)

0-9, a-l

m-q

r-z

map 1
mapreduce 1
phase 2

a 2
hadoop 1
is 2

reduce 1
there 2
uses 1

Output

Tuesday, December 4, 12

The final view of the WordCount process flow. The reducer just sums the counts and writes the output.
The output files contain one line for each key (the word) and value (the count), assuming we’re using
text output. The choice of delimiter between key and value is up to you, but tab is common.

Copyright	 ©	 2011-‐2012,	 Think	 Big	 AnalyCcs,	 All	 Rights	 Reserved

There is a
Map phase

Hadoop uses
MapReduce

Input

(n, "…")

(n, "…")

(n, "")

Mappers Sort,
Shuffle

(a, [1,1]),
(hadoop, [1]),

(is, [1,1])

(map, [1]),
(mapreduce, [1]),

(phase, [1,1])

Reducers

There is a
Reduce phase (n, "…")

(reduce, [1]),
(there, [1,1]),

(uses, 1)

(hadoop, 1)

(uses, 1)
(mapreduce, 1)

(is, 1), (a, 1)

(there, 1)

(there, 1),
(reduce, 1)

(phase,1)

(map, 1),(phase,1)

(is, 1), (a, 1)

0-9, a-l

m-q

r-z

map 1
mapreduce 1
phase 2

a 2
hadoop 1
is 2

reduce 1
there 2
uses 1

Output

Map:

• Transform	 one	 input	 to	 0-‐N	
outputs.	

Reduce:

• Collect multiple inputs into
one output.

Tuesday, December 4, 12

To recap, a “map” transforms one input to one output, but this is generalized in MapReduce to be one
to 0-N. The output key-value pairs are distributed to reducers. The “reduce” collects together multiple
inputs with the same key into

History	 of	
MapReduce

Tuesday, December 4, 12

Let’s review where MapReduce came from and its best-known, open-source incarnation,
Hadoop.

How	 would	 you	
index	 the	 web?

Tuesday, December 4, 12

How	 would	 you	
index	 the	 web?

Tuesday, December 4, 12

Did Google search the entire web in 0.26 seconds to find these ~49M results?

You	 ask	 a	 phrase	 and	
the	 search	 engine	 finds	

the	 best	 match	 in	
billions	 of	 web	 pages.

Tuesday, December 4, 12

Actually,	 Google	
computes	 the	 index	
that	 maps	 terms	 to	
pages	 in	 advance.

Google’s famous Page Rank algorithm.

Tuesday, December 4, 12

In	 the	 early	 2000s,	
Google	 invented	 server	
infrastructure	 to	 support	

PageRank,	 etc...

Tuesday, December 4, 12

Google	 File	 System
for	 Storage

2003

Tuesday, December 4, 12

A distributed file system provides horizontal scalability and resiliency when file blocks are
duplicated around the cluster.

MapReduce
for	 ComputaCon

2004

Tuesday, December 4, 12

The compute model for processing all that data is MapReduce. It handles lots of boilerplate,
like breaking down jobs into tasks, distributing the tasks around the cluster, monitoring the
tasks, etc. You write your algorithm to the MR programming model.

About	 this	 Cme,	 Doug	
CuGng,	 the	 creator	 of	 	
Lucene	 was	 working	 on	

Nutch...

Tuesday, December 4, 12

Lucene is an open-source text search engine. Nutch is an open source web crawler.

He	 implemented	 clean-‐
room	 versions	 of	

MapReduce	 and	 GFS...

Tuesday, December 4, 12

By	 2006	 ,	 they	 became	
part	 of	 a	 separate	 	
Apache	 project,	
called	 Hadoop.

Tuesday, December 4, 12

The name comes from a toy, stuffed elephant that Cutting’s son owned at the time.

Benefits	 of	
MapReduce

Tuesday, December 4, 12

The	 best	 way	 to	
approach	 Big	 Data	 is	 to	

scale	 horizontally.

Tuesday, December 4, 12

We can’t build vertical systems big enough and if we could, they would cost a fortune!

Hadoop	 Design	 Goals

Oh,	 and	 run	 on	 server-‐class,	
commodity	 	 hardware.

Minimize I/O

Overhead!!

Tuesday, December 4, 12

True of Google’s GFS and MapReduce, too. Minimizing disk and network I/O latency/
overhead is critical, because it’s the largest throughput bottleneck. So, optimization is a core
design goal of Hadoop (both MR and HDFS). It affects the features and performance of
everything in the stack above it, including high-level programming tools!

By	 design,	 Hadoop	 is	 	
great	 for	 batch	 mode	

data	 crunching.

Tuesday, December 4, 12

… but less so for “real-time” event handling, as we’ll discuss...

Hadoop	 also	 has	 a	
vibrant	 community	
that’s	 evolving	 the	

pla_orm.

Tuesday, December 4, 12

For the IT manager, especially at large, cautious organizations.

Commercial	 support	 is	
available	 from	 many	

companies.

Tuesday, December 4, 12

From Hadoop-oriented companies like Cloudera, MapR, and HortonWorks, to integrators like
IBM and Greenplum.

MapReduce	
and	 its	

Discontents

Tuesday, December 4, 12

Is MapReduce the end of the story? Does it meet all our needs? Let’s look at a few problems...

It’s	 hard	 to	 implement	
many	 Algorithms	
in	 MapReduce.

#1

Tuesday, December 4, 12

Even word count is not “obvious”. When you get to fancier stuff like joins, group-bys, etc.,
the mapping from the algorithm to the implementation is not trivial at all. In fact,
implementing algorithms in MR is now a specialized body of knowledge...

For	 Hadoop	 in	
parCcularly,	
the	 Java	 API	 is
hard	 to	 use.

#2

Tuesday, December 4, 12

The Hadoop Java API is even more verbose and tedious to use than it should be.

46

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import java.util.StringTokenizer;

class WCMapper extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 static final IntWritable one = new IntWritable(1);
 static final Text word = new Text; // Value will be set in a non-thread-safe way!

 @Override
 public void map(LongWritable key, Text valueDocContents,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 String[] tokens = valueDocContents.toString.split("\\s+");
 for (String wordString: tokens) {
 if (wordString.length > 0) {
 word.set(wordString.toLowerCase);
 output.collect(word, one);
 }
 }
 }
}

class WCReduce extends MapReduceBase
 implements Reducer[Text, IntWritable, Text, IntWritable] {

 public void reduce(Text keyWord, java.util.Iterator<IntWritable> valuesCounts,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 int totalCount = 0;
 while (valuesCounts.hasNext) {
 totalCount += valuesCounts.next.get;
 }
 output.collect(keyWord, new IntWritable(totalCount));
 }
}

Tuesday, December 4, 12
This is intentionally too small to read and we’re not showing the main routine, which doubles the code size. The algorithm is simple, but the framework is in your
face. In the next several slides, notice which colors dominate. In this slide, it’s green for types (classes), with relatively few yellow functions that implement actual
operations.
The main routine I’ve omitted contains additional boilerplate for configuring and running the job. This is just the “core” MapReduce code. In fact, Word Count is not
too bad, but when you get to more complex algorithms, even conceptually simple ideas like relational-style joins and group-bys, the corresponding MapReduce
code in this API gets complex and tedious very fast!

47

Use	 SQL!

(SoluCon	 #1)

Tuesday, December 4, 12
I claimed we should be using FP for big data, so why not use SQL when you can! Here are 3 options.

48

CREATE TABLE docs (line STRING);
LOAD DATA INPATH '/path/to/docs' INTO TABLE docs;

CREATE TABLE word_counts AS
SELECT word, count(1) AS count FROM
(SELECT explode(split(line, '\W+')) AS word FROM docs) w
GROUP BY word
ORDER BY word;

Word Count, in HiveQL

SQL!

Tuesday, December 4, 12
This is how you could implement word count in Hive. We’re using some Hive built-in functions for tokenizing words in each “line”, the one “column” in the docs
table, etc., etc.

Copyright	 ©	 2011-‐2012,	 Think	 Big	 AnalyCcs,	 All	 Rights	 Reserved

• Hive:	 SQL	 on	 top	 of	 MapReduce.

• Shark:	 Hive	 ported	 to	 Spark.

• Impala:	 HiveQL	 with	 new,	 faster	
back	 end.

	 Use	 SQL	 when	 you	 can!

Tuesday, December 4, 12

See http://hive.apache.org/ or my book for Hive, http://shark.cs.berkeley.edu/ for shark,
and http://www.cloudera.com/content/cloudera/en/products/cloudera-enterprise-core/
cloudera-enterprise-RTQ.html for Impala. Impala is very new. It doesn’t yet support all Hive
features.

Copyright	 ©	 2011-‐2012,	 Think	 Big	 AnalyCcs,	 All	 Rights	 Reserved

• Copied	 from	 Google’s	 Dremel.

• C++	 and	 Java	 back	 end.

• Provides	 up	 to	 100x	 performance	
improvement!

• Developed	 by	 Cloudera.

	 Impala

Tuesday, December 4, 12

See http://www.cloudera.com/content/cloudera/en/products/cloudera-enterprise-core/
cloudera-enterprise-RTQ.html. However, this was just announced recently, so it’s not
production ready quite yet...

51

Use Cascading (Java)

(SoluCon	 #2a)

Tuesday, December 4, 12
Cascading is a Java library that provides higher-level abstractions for building data processing pipelines with concepts familiar from SQL such as a
joins, group-bys, etc. It works on top of Hadoop’s MapReduce and hides most of the boilerplate from you.
See http://cascading.org.

Data	 flows	 consist	 of	 	
source	 and	 sink	 Taps	
connected	 by	 Pipes.

Cascading	 Concepts

Tuesday, December 4, 12

Copyright	 ©	 2011-‐2012,	 Think	 Big	 AnalyCcs,	 All	 Rights	 Reserved

Word	 Count

Flow
Sequence of Pipes ("word count assembly")

Each(Regex)

HDFS
Tap

(source)

line

Tap
(sink)

GroupBy
words

Every(Count)
word count

Tuesday, December 4, 12

Schematically, here is what Word Count looks like in Cascading. See http://
docs.cascading.org/cascading/1.2/userguide/html/ch02.html for details.

54

import org.cascading.*;
...
public class WordCount {
 public static void main(String[] args) {
 String inputPath = args[0];
 String outputPath = args[1];
 Properties properties = new Properties();
 FlowConnector.setApplicationJarClass(properties, Main.class);

 Scheme sourceScheme = new TextLine(new Fields("line"));
 Scheme sinkScheme = new TextLine(new Fields("word", "count"));
 Tap source = new Hfs(sourceScheme, inputPath);
 Tap sink = new Hfs(sinkScheme, outputPath, SinkMode.REPLACE);

 Pipe assembly = new Pipe("wordcount");

 String regex = "(?<!\\pL)(?=\\pL)[^]*(?<=\\pL)(?!\\pL)";
 Function function = new RegexGenerator(new Fields("word"), regex);
 assembly = new Each(assembly, new Fields("line"), function);
 assembly = new GroupBy(assembly, new Fields("word"));
 Aggregator count = new Count(new Fields("count"));
 assembly = new Every(assembly, count);

 FlowConnector flowConnector = new FlowConnector(properties);
 Flow flow = flowConnector.connect("word-count", source, sink, assembly);
 flow.complete();
 }
}

Tuesday, December 4, 12
Here is the Cascading Java code. It’s cleaner than the MapReduce API, because the code is more focused on the algorithm with less boilerplate,
although it looks like it’s not that much shorter. HOWEVER, this is all the code, where as previously I omitted the setup (main) code. See http://
docs.cascading.org/cascading/1.2/userguide/html/ch02.html for details of the API features used here; we won’t discuss them here, but just
mention some highlights.
Note that there is still a lot of green for types, but at least the API emphasizes composing behaviors together.

55

Use	 Scalding (Scala)

(SoluCon	 #2b)

Tuesday, December 4, 12
Scalding is a Scala “DSL” (domain-specific language) that wraps Cascading providing an even more intuitive and more boilerplate-free API for
writing MapReduce jobs. https://github.com/twitter/scalding
Scala is a new JVM language that modernizes Java’s object-oriented (OO) features and adds support for functional programming, as we discussed
previously and we’ll revisit shortly.

56

import com.twitter.scalding._

class WordCountJob(args: Args) extends Job(args) {
 TextLine(args("input"))
 .read
 .flatMap('line -> 'word) {
 line: String => line.trim.toLowerCase.split("\\W+")
 }
 .groupBy('word) { group => group.size('count) }
 }
 .write(Tsv(args("output")))
}

That’s It!!

Tuesday, December 4, 12
This Scala code is almost pure domain logic with very little boilerplate. There are a few minor differences in the implementation. You don’t explicitly specify the
“Hfs” (Hadoop Distributed File System) taps. That’s handled by Scalding implicitly when you run in “non-local” model. Also, I’m using a simpler tokenization
approach here, where I split on anything that isn’t a “word character” [0-9a-zA-Z_].
There is little green, in part because Scala infers type in many cases. There is a lot more yellow for the functions that do real work!
What if MapReduce, and hence Cascading and Scalding, went obsolete tomorrow? This code is so short, I wouldn’t care about throwing it away! I invested little
time writing it, testing it, etc.

Copyright	 ©	 2011-‐2012,	 Think	 Big	 AnalyCcs,	 All	 Rights	 Reserved

• Crunch	 (Java)	 &
Scrunch	 (Scala)

• Scoobi	 (Scala)
• ...

Other	 Improved	 APIs:

Tuesday, December 4, 12

See https://github.com/cloudera/crunch.
Others include Scoobi (http://nicta.github.com/scoobi/) and Spark, which we’ll discuss next.

58

Use	 Spark (Scala)

(SoluCon	 #3)

Tuesday, December 4, 12

Copyright	 ©	 2011-‐2012,	 Think	 Big	 AnalyCcs,	 All	 Rights	 Reserved

• Distributed	 compuCng	 with	
in-‐memory	 caching.

• Up	 to	 30x	 faster	 than	
MapReduce.

Spark	 is	 an	 AlternaCve	 to	
Hadoop	 MapReduce:

Tuesday, December 4, 12

See http://www.spark-project.org/
Why isn’t it more widely used? 1) lack of commercial support, 2) only recently emerged out of
academia.

Copyright	 ©	 2011-‐2012,	 Think	 Big	 AnalyCcs,	 All	 Rights	 Reserved

• Originally	 designed	 for	
machine	 learning	
applicaCons.

Spark	 is	 an	 AlternaCve	 to	
Hadoop	 MapReduce:

Tuesday, December 4, 12

61

object WordCountSpark {
 def main(args: Array[String]) {
 val file = spark.textFile(args(0))
 val counts = file.flatMap(line => line.split("\\W+"))
 .map(word => (word, 1))
 .reduceByKey(_ + _)
 counts.saveAsTextFile(args(1))
 }
}

Even more succinct.
Note that there are only 3 explicit types required.

Tuesday, December 4, 12
This spark example is actually closer in a few details, i.e., function names used, to the original Hadoop Java API example, but it cuts down boilerplate to the bare
minimum.

It’s	 not	 suitable	 for	
“real-‐Sme”

event	 processing.

#3

Tuesday, December 4, 12

For typical web/enterprise systems, “real-time” is up to 100s of milliseconds, so I’m using
the term broadly (but following common practice in this industry). True real-time systems,
such as avionics, have much tighter constraints.

Storm!
Tuesday, December 4, 12

Storm	 implements	
reliable,	 distributed	

“real-‐Sme”
event	 processing.

Tuesday, December 4, 12

http://storm-project.net/ Created by Nathan Marz, now at Twitter, who also created
Cascalog, the Clojure wrapper around Cascading with added Datalog (logic programming)
features.

Spout

Bolt

Bolt

Bolt

BoltSpout

Tuesday, December 4, 12

In Storm terminology, Spouts are data sources and bolts are the event processors. There are
facilities to support reliable message handling, various sources encapsulated in Sprouts and
various targets of output. Distributed processing is baked in from the start.

Databases?

Tuesday, December 4, 12

Copyright	 ©	 2011-‐2012,	 Think	 Big	 AnalyCcs,	 All	 Rights	 Reserved

• Since	 databases	 are	 designed	 for	
fast,	 transacConal	 updates,	
consider	 a	 database	 for	 	 	 	 	 	 	 	 	
event	 processing.

	 SQL	 	 or	 NoSQL	
Databases?

Tuesday, December 4, 12

Use a SQL database unless you need the scale and looser schema of a NoSQL database!

It’s	 not	 ideal	 for	
graph	 processing.

#4

Tuesday, December 4, 12

Copyright	 ©	 2011-‐2012,	 Think	 Big	 AnalyCcs,	 All	 Rights	 Reserved

• Google	 invented	 MapReduce,

• …	 but	 MapReduce	 is	 not	 ideal	 for	
Page	 Rank	 and	 other	 graph	
algorithms.	

	 Google’s	 Page	 Rank

Tuesday, December 4, 12

Recall that PageRank is the famous algorithm invented by Sergey Brin and Larry Page to index
the web. It’s the foundation of Google’s search engine.

Copyright	 ©	 2011-‐2012,	 Think	 Big	 AnalyCcs,	 All	 Rights	 Reserved

• 1	 MR	 job	 for	 each	
iteraCon	 that	 updates	
all	 n	 nodes/edges.

• Graph	 saved	 to	 disk	
ajer	 each	 iteraCon.

• ...

Why	 not	 MapReduce?

C

E

A

D

F

B

Tuesday, December 4, 12

The presentation http://www.slideshare.net/shatteredNirvana/pregel-a-system-for-
largescale-graph-processing
itemizes all the major issues with using MR to implement graph algorithms.
In a nutshell, a job with a map and reduce phase is waaay to course-grained...

71

Use	 Graph	 Processing

(SoluCon	 #4)

Tuesday, December 4, 12
A good summary presentation: http://www.slideshare.net/shatteredNirvana/pregel-a-system-for-largescale-graph-processing

Copyright	 ©	 2011-‐2012,	 Think	 Big	 AnalyCcs,	 All	 Rights	 Reserved

• Pregel:	 New	 graph	 framework	 for	
Page	 Rank.

• Bulk,	 Synchronous	 Parallel	 (BSP).

• Graphs	 are	 first-‐class	 ciCzens.

• Efficiently	 processes	 updates...	

	 Google’s	 Pregel

Tuesday, December 4, 12

Pregel is intended to replace MR for PageRank, but I’ve heard they haven’t actually been able
to switch over to it yet. “Pregel” is the river that runs through the city of Königsberg, Prussia
(now called Kaliningrad, Ukraine). 7 bridges crossed the river in the city (including to 5 to 2
islands between river branches). Leonhard Euler invented graph theory when he analyzed the
question of whether or not you can cross all 7 bridges without retracing your steps (you
can’t).

Copyright	 ©	 2011-‐2012,	 Think	 Big	 AnalyCcs,	 All	 Rights	 Reserved

• Apache	 Giraph.

• Apache	 Hama.

• Aurelius	 Titan.

	 Open-‐source	
AlternaCves

All are
somewhat
immature.

Tuesday, December 4, 12

http://incubator.apache.org/giraph/
http://hama.apache.org/
http://thinkaurelius.github.com/titan/
None is very mature nor has extensive commercial support.

74

A Manifesto...

Tuesday, December 4, 12
To bring this altogether, I think we have opportunities for a better way...

Hadoop is the
Enterprise Java Beans

 of our time.

Tuesday, December 4, 12
I worked with EJBs a decade ago. The framework was completely invasive into your business logic. There were too many configuration options in
XML files. The framework “paradigm” was a poor fit for most problems (like soft real time systems and most algorithms beyond Word Count).
Internally, EJB implementations were inefficient and hard to optimize, because they relied on poorly considered object boundaries that muddled
more natural boundaries. (I’ve argued in other presentations and my “FP for Java Devs” book that OOP is a poor modularity tool…)
The fact is, Hadoop reminds me of EJBs in almost every way. It’s a 1st generation solution that mostly works okay and people do get work done
with it, but just as the Spring Framework brought an essential rethinking to Enterprise Java, I think there is an essential rethink that needs to
happen in Big Data, specifically around Hadoop. The functional programming community, is well positioned to create it...

Stop using Java!

Tuesday, December 4, 12
Java has taken us a long way and made many organizations successful over the years. Also, the JVM remains one of our most valuable tools in all of
IT. But the language is really wrong for data purposes and its continued use by Big Data vendors is slowing down overall progress, as well as
application developer productivity, IMHO. Java emphasizes the wrong abstractions, objects instead of mathematically-inspired functional
programming constructs, and Java encourages inflexible bloat because it’s verbose compared to more modern alternatives and objects (at least
class-based ones…) are far less reusable and flexible than people realize. They also contribute to focusing on the wrong concepts, structure
instead of behavior.

Use Functional
Languages.

77

Tuesday, December 4, 12
Why is Functional Programming better for Big Data? The work we do with data is inherently mathematical transformations and FP is inspired by
math. Hence, it’s naturally a better fit, much more so than object-oriented programming. And, modern languages like Scala, Clojure, Erlang, F#,
OCaml, and Haskell are more concise and better at eliminating boilerplate, while still providing excellent performance.

Note that one reason SQL has succeeded all these years is because it is also inspired by math, e.g., set theory.

Understand
Functional Collections.

Tuesday, December 4, 12
We already have the right model in the collection APIs that come with functional languages. They are far better engineered for intuitive data
transformations. They provide the right abstractions and hide boilerplate. In fact, they make it relatively easy to optimize implementations for
parallelization. The Scala collections offer parallelization with a tiny API call. Spark and Cascading transparently distribute collections across a
cluster.

Erlang, Akka:
Actor-based,
Distributed

Computation

Fine Grain
 Compute Models.

Tuesday, December 4, 12
We can start using new, more efficient compute models, like Spark, Pregel, and Impala today. Of course, you have to consider maturity, viability,
and support issues in large organizations. So if you want to wait until these alternatives are more mature, then at least use better APIs for Hadoop!
For example, Erlang is a very mature language with the Actor model backed in. Akka is a Scala distributed computing model based on the Actor
model of concurrency. It exposes clean, low-level primitives for robust, distributed services (e.g., Actors), upon which we can build flexible big data
systems that can handle soft real time and batch processing efficiently and with great scalability.

Final Thought:

80

Tuesday, December 4, 12
A final thought about Big Data...

QuesCons?

81

TechMesh	 London	 2012
December	 5,	 2012

@deanwampler
dean.wampler@thinkbiganalyCcs.com
polyglotprogramming.com/talks

Tuesday, December 4, 12

All pictures © Dean Wampler, 2011-2012.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://thinkbiganalytics.com
http://thinkbiganalytics.com
http://twitter.com/deanwampler
http://twitter.com/deanwampler
mailto:dean.wampler@thinkbiganalytics.com?subject=About%20your%20MapReduce%20talk
mailto:dean.wampler@thinkbiganalytics.com?subject=About%20your%20MapReduce%20talk
http://polyglotprogramming.com/talks
http://polyglotprogramming.com/talks

