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On my website, this talk is called “MapReduce and Its Discontents”.
MR has been a useful technology, but it has a “first generation” feel. What’s next?

(All photos are © Dean Wampler, 2011-2012, All Rights Reserved. Otherwise, the 
presentation is free to use.)
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Big	  Data
Data	  so	  big	  that	  

tradiConal	  soluCons	  are	  
too	  slow,	  too	  small,	  or	  
too	  expensive	  to	  use.

3 Hat tip: Bob Korbus

Tuesday, December 4, 12

It’s a buzz word, but generally associated with the problem of data sets too big to manage 
with traditional SQL databases. A parallel development has been the NoSQL movement that is 
good at handling semistructured data, scaling, etc.
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3	  Trends

Tuesday, December 4, 12
Three trends influence my thinking...
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Data	  Size	  ⬆

Tuesday, December 4, 12
Data volumes are obviously growing… rapidly.
Facebook now has over 600PB (Petabytes) of data in Hadoop clusters!
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Formal	  Schemas	  ⬇

Tuesday, December 4, 12
There is less emphasis on “formal” schemas and domain models, i.e., both relational models of data and OO models, because data schemas and 
sources change rapidly, and we need to integrate so many disparate sources of data. So, using relatively-agnostic software, e.g., collections of 
things where the software is more agnostic about the structure of the data and the domain, tends to be faster to develop, test, and deploy. Put 
another way, we find it more useful to build somewhat agnostic applications and drive their behavior through data...
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Data-‐Driven	  Programs	  ⬆

Tuesday, December 4, 12
This is the 2nd generation “Stanley”, the most successful self-driving car ever built (by a Google-Stanford) team. Machine learning is growing in 
importance. Here, generic algorithms and data structures are trained to represent the “world” using data, rather than encoding a model of the 
world in the software itself. It’s another example of generic algorithms that produce the desired behavior by being application agnostic and data 
driven, rather than hard-coding a model of the world. (In practice, however, a balance is struck between completely agnostic apps and some 
engineering towards for the specific problem, as you might expect...)
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Big	  Data
Architecture

Tuesday, December 4, 12
What should software architectures look like for these kinds of systems?
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Object Model
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Tuesday, December 4, 12
Traditionally, we’ve kept a rich, in-memory domain model requiring an ORM to convert persistent data into the model. This is resource overhead and complexity we can’t afford in big data 
systems. Rather, we should treat the result set as it is, a particular kind of collection, do the minimal transformation required to exploit our collections libraries and classes representing some 
domain concepts (e.g., Address, StockOption, etc.), then write functional code to implement business logic (or drive emergent behavior with machine learning algorithms…)

The toJSON methods are there because we often convert these object graphs back into fundamental structures, such as the maps and arrays of JSON so we can send them to the browser!
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Object Model
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Tuesday, December 4, 12
But the traditional systems are a poor fit for this new world: 1) they add too much overhead in computation (the ORM layer, etc.) and memory (to store the objects). Most of what we do with 
data is mathematical transformation, so we’re far more productive (and runtime efficient) if we embrace fundamental data structures used throughout (lists, sets, maps, trees) and build rich 
transformations into those libraries, transformations that are composable to implement business logic.
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• Focus on:

• Lists

• Maps

• Sets

• Trees

• ...

Relational/
Functional 

Domain Logic

Database

Query

SQL

Result Set

1

2

Functional 
Wrapper for 

Relational Data

3

Functional 
Abstractions

4

Tuesday, December 4, 12
But the traditional systems are a poor fit for this new world: 1) they add too much overhead in computation (the ORM layer, etc.) and memory (to store the objects). Most of what we do with 
data is mathematical transformation, so we’re far more productive (and runtime efficient) if we embrace fundamental data structures used throughout (lists, sets, maps, trees) and build rich 
transformations into those libraries, transformations that are composable to implement business logic.
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In a broader view, object models tend to push us towards centralized, complex systems that don’t decompose well and stifle reuse and optimal deployment scenarios. FP code makes it 
easier to write smaller, focused services that we compose and deploy as appropriate.
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In a broader view, object models tend to push us towards centralized, complex systems that don’t decompose well and stifle reuse and optimal deployment scenarios. FP code makes it 
easier to write smaller, focused services that we compose and deploy as appropriate. Each “ProcessN” could be a parallel copy of another process, for horizontal, “shared-nothing” 
scalability, or some of these processes could be other services…
Smaller, focused services scale better, especially horizontally. They also don’t encapsulate more business logic than is required, and this (informal) architecture is also suitable for scaling 
ML and related algorithms.
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• Data-Driven 
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And this structure better fits the trends I outlined at the beginning of the talk.
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• MapReduce

• Distributed FS
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And MapReduce + a distributed file system, like Hadoop’s MapReduce and HDFS, fit this model. 
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What	  Is
MapReduce?
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MapReduce	  in	  Hadoop

Let’s	  look	  at	  a	  
MapReduce	  algorithm:	  

WordCount.
(The	  Hello	  World	  of	  MapReduce…)

Tuesday, December 4, 12
Let’s walk through the “Hello World” of MapReduce, the Word Count algorithm, at a conceptual level. We’ll see actual code shortly!
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Four input documents, one left empty, the others with small phrases (for simplicity…). The word count 
output is on the right (we’ll see why there are three output “documents”). We need to get from the input 
on the left-hand side to the output on the right-hand side.
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Here is a schematic view of the steps in Hadoop MapReduce. Each Input file is read by a single 
Mapper process (default: can be many-to-many, as we’ll see later). 
The Mappers emit key-value pairs that will be sorted, then partitioned and “shuffled” to the reducers, 
where each Reducer will get all instances of a given key (for 1 or more values).
Each Reducer generates the final key-value pairs and writes them to one or more files (based on the 
size of the output).
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Each document gets a mapper. All data is organized into key-value pairs; each line will be a 
value and the offset position into the file will be the key, which we don’t care about. I’m 
showing each document’s contents in a box and 1 mapper task (JVM process) per document. 
Large documents might get split to several mapper tasks.
The mappers tokenize each line, one at a time, converting all words to lower case and 
counting them...
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The mappers emit key-value pairs, where each key is one of the words, and the value is the 
count. In the most naive (but also most memory efficient) implementation, each mapper 
simply emits (word, 1) each time “word” is seen. However, this is IO inefficient!
Note that the mapper for the empty doc. emits no pairs, as you would expect.
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The mappers themselves don’t decide to which reducer each pair should be sent. Rather, the 
job setup configures what to do and the Hadoop runtime enforces it during the Sort/Shuffle 
phase, where the key-value pairs in each mapper are sorted by key (that is locally, not 
globally) and then the pairs are routed to the correct reducer, on the current machine or 
other machines.
Note how we partitioned the reducers, by first letter of the keys. (By default, MR just hashes 
the keys and distributes them modulo # of reducers.) 
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The reducers are passed each key (word) and a collection of all the values for that key (the 
individual counts emitted by the mapper tasks). The MR framework creates these collections 
for us.
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The final view of the WordCount process flow. The reducer just sums the counts and writes the output.
The output files contain one line for each key (the word) and value (the count), assuming we’re using 
text output. The choice of delimiter between key and value is up to you, but tab is common.
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• Transform	  one	  input	  to	  0-‐N	  
outputs.	  

Reduce:

• Collect multiple inputs into 
one output.
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To recap, a “map” transforms one input to one output, but this is generalized in MapReduce to be one 
to 0-N. The output key-value pairs are distributed to reducers. The “reduce” collects together multiple 
inputs with the same key into



History	  of	  
MapReduce
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Let’s review where MapReduce came from and its best-known, open-source incarnation, 
Hadoop.



How	  would	  you	  
index	  the	  web?
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How	  would	  you	  
index	  the	  web?
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Did Google search the entire web in 0.26 seconds to find these ~49M results?



You	  ask	  a	  phrase	  and	  
the	  search	  engine	  finds	  

the	  best	  match	  in	  
billions	  of	  web	  pages.
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Actually,	  Google	  
computes	  the	  index	  
that	  maps	  terms	  to	  
pages	  in	  advance.

Google’s famous Page Rank algorithm.
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In	  the	  early	  2000s,	  
Google	  invented	  server	  
infrastructure	  to	  support	  

PageRank,	  etc...
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Google	  File	  System
for	  Storage

2003
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A distributed file system provides horizontal scalability and resiliency when file blocks are 
duplicated around the cluster.



MapReduce
for	  ComputaCon

2004
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The compute model for processing all that data is MapReduce. It handles lots of boilerplate, 
like breaking down jobs into tasks, distributing the tasks around the cluster, monitoring the 
tasks, etc. You write your algorithm to the MR programming model.



About	  this	  Cme,	  Doug	  
CuGng,	  the	  creator	  of	  	  
Lucene	  was	  working	  on	  

Nutch...
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Lucene is an open-source text search engine. Nutch is an open source web crawler.



He	  implemented	  clean-‐
room	  versions	  of	  

MapReduce	  and	  GFS...
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By	  2006	  ,	  they	  became	  
part	  of	  a	  separate	  	  
Apache	  project,	  
called	  Hadoop.
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The name comes from a toy, stuffed elephant that Cutting’s son owned at the time.



Benefits	  of	  
MapReduce
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The	  best	  way	  to	  
approach	  Big	  Data	  is	  to	  

scale	  horizontally.

Tuesday, December 4, 12

We can’t build vertical systems big enough and if we could, they would cost a fortune!



Hadoop	  Design	  Goals

Oh,	  and	  run	  on	  server-‐class,	  
commodity	  	  hardware.

Minimize I/O
 

Overhead!!
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True of Google’s GFS and MapReduce, too. Minimizing disk and network I/O latency/
overhead is critical, because it’s the largest throughput bottleneck. So, optimization is a core 
design goal of Hadoop (both MR and HDFS). It affects the features and performance of 
everything in the stack above it, including high-level programming tools!



By	  design,	  Hadoop	  is	  	  
great	  for	  batch	  mode	  

data	  crunching.
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… but less so for “real-time” event handling, as we’ll discuss...



Hadoop	  also	  has	  a	  
vibrant	  community	  
that’s	  evolving	  the	  

pla_orm.
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For the IT manager, especially at large, cautious organizations.



Commercial	  support	  is	  
available	  from	  many	  

companies.
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From Hadoop-oriented companies like Cloudera, MapR, and HortonWorks, to integrators like 
IBM and Greenplum.



MapReduce	  
and	  its	  

Discontents
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Is MapReduce the end of the story? Does it meet all our needs? Let’s look at a few problems...



It’s	  hard	  to	  implement	  
many	  Algorithms	  
in	  MapReduce.

#1
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Even word count is not “obvious”. When you get to fancier stuff like joins, group-bys, etc., 
the mapping from the algorithm to the implementation is not trivial at all. In fact, 
implementing algorithms in MR is now a specialized body of knowledge...



For	  Hadoop	  in	  
parCcularly,	  
the	  Java	  API	  is
hard	  to	  use.

#2
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The Hadoop Java API is even more verbose and tedious to use than it should be.
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import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import java.util.StringTokenizer;

class WCMapper extends MapReduceBase 
    implements Mapper<LongWritable, Text, Text, IntWritable> {

  static final IntWritable one  = new IntWritable(1);
  static final Text word = new Text;   // Value will be set in a non-thread-safe way!

  @Override
  public void map(LongWritable key, Text valueDocContents, 
          OutputCollector<Text, IntWritable> output, Reporter reporter) {
      String[] tokens = valueDocContents.toString.split("\\s+");
      for (String wordString: tokens) {
        if (wordString.length > 0) {
          word.set(wordString.toLowerCase);
          output.collect(word, one);
        }
      }
    }
}

class WCReduce extends MapReduceBase 
    implements Reducer[Text, IntWritable, Text, IntWritable] {

  public void reduce(Text keyWord, java.util.Iterator<IntWritable> valuesCounts, 
             OutputCollector<Text, IntWritable> output, Reporter reporter) {
    int totalCount = 0;
    while (valuesCounts.hasNext) {
      totalCount += valuesCounts.next.get;
    }
    output.collect(keyWord, new IntWritable(totalCount));
  }
}

Tuesday, December 4, 12
This is intentionally too small to read and we’re not showing the main routine, which doubles the code size. The algorithm is simple, but the framework is in your 
face. In the next several slides, notice which colors dominate. In this slide, it’s green for types (classes), with relatively few yellow functions that implement actual 
operations. 
The main routine I’ve omitted contains additional boilerplate for configuring and running the job. This is just the “core” MapReduce code. In fact, Word Count is not 
too bad, but when you get to more complex algorithms, even conceptually simple ideas like relational-style joins and group-bys, the corresponding MapReduce 
code in this API gets complex and tedious very fast!
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Use	  SQL!

(SoluCon	  #1)
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I claimed we should be using FP for big data, so why not use SQL when you can! Here are 3 options.
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CREATE TABLE docs (line STRING);
LOAD DATA INPATH '/path/to/docs' INTO TABLE docs;

CREATE TABLE word_counts AS
SELECT word, count(1) AS count FROM
(SELECT explode(split(line, '\W+')) AS word FROM docs) w
GROUP BY word
ORDER BY word;

Word Count, in HiveQL

SQL!

Tuesday, December 4, 12
This is how you could implement word count in Hive. We’re using some Hive built-in functions for tokenizing words in each “line”, the one “column” in the docs 
table, etc., etc.
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• Hive:	  SQL	  on	  top	  of	  MapReduce.

• Shark:	  Hive	  ported	  to	  Spark.

• Impala:	  HiveQL	  with	  new,	  faster	  
back	  end.

	  Use	  SQL	  when	  you	  can!
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See http://hive.apache.org/ or my book for Hive, http://shark.cs.berkeley.edu/ for shark, 
and http://www.cloudera.com/content/cloudera/en/products/cloudera-enterprise-core/
cloudera-enterprise-RTQ.html for Impala. Impala is very new. It doesn’t yet support all Hive 
features.
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• Copied	  from	  Google’s	  Dremel.

• C++	  and	  Java	  back	  end.

• Provides	  up	  to	  100x	  performance	  
improvement!

• Developed	  by	  Cloudera.

	  Impala
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See http://www.cloudera.com/content/cloudera/en/products/cloudera-enterprise-core/
cloudera-enterprise-RTQ.html. However, this was just announced recently, so it’s not 
production ready quite yet...
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Use Cascading (Java)

(SoluCon	  #2a)
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Cascading is a Java library that provides higher-level abstractions for building data processing pipelines with concepts familiar from SQL such as a 
joins, group-bys, etc. It works on top of Hadoop’s MapReduce and hides most of the boilerplate from you.
See http://cascading.org.



Data	  flows	  consist	  of	  	  
source	  and	  sink	  Taps	  
connected	  by	  Pipes.

Cascading	  Concepts
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Schematically, here is what Word Count looks like in Cascading. See http://
docs.cascading.org/cascading/1.2/userguide/html/ch02.html for details.
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import org.cascading.*;
...
public class WordCount {
  public static void main(String[] args) {
    String inputPath  = args[0];
    String outputPath = args[1];
    Properties properties = new Properties();
    FlowConnector.setApplicationJarClass( properties, Main.class );

    Scheme sourceScheme = new TextLine( new Fields( "line" ) );
    Scheme sinkScheme = new TextLine( new Fields( "word", "count" ) );
    Tap source = new Hfs( sourceScheme, inputPath );
    Tap sink   = new Hfs( sinkScheme, outputPath, SinkMode.REPLACE );

    Pipe assembly = new Pipe( "wordcount" );

    String regex = "(?<!\\pL)(?=\\pL)[^ ]*(?<=\\pL)(?!\\pL)";
    Function function = new RegexGenerator( new Fields( "word" ), regex );
    assembly = new Each( assembly, new Fields( "line" ), function );
    assembly = new GroupBy( assembly, new Fields( "word" ) );
    Aggregator count = new Count( new Fields( "count" ) );
    assembly = new Every( assembly, count );

    FlowConnector flowConnector = new FlowConnector( properties );
    Flow flow = flowConnector.connect( "word-count", source, sink, assembly);
    flow.complete();
  }
}

Tuesday, December 4, 12
Here is the Cascading Java code. It’s cleaner than the MapReduce API, because the code is more focused on the algorithm with less boilerplate, 
although it looks like it’s not that much shorter. HOWEVER, this is all the code, where as previously I omitted the setup (main) code. See http://
docs.cascading.org/cascading/1.2/userguide/html/ch02.html for details of the API features used here; we won’t discuss them here, but just 
mention some highlights. 
Note that there is still a lot of green for types, but at least the API emphasizes composing behaviors together.
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Use	  Scalding (Scala)

(SoluCon	  #2b)

Tuesday, December 4, 12
Scalding is a Scala “DSL” (domain-specific language) that wraps Cascading providing an even more intuitive and more boilerplate-free API for 
writing MapReduce jobs.  https://github.com/twitter/scalding
Scala is a new JVM language that modernizes Java’s object-oriented (OO) features and adds support for functional programming, as we discussed 
previously and we’ll revisit shortly.
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import com.twitter.scalding._

class WordCountJob(args: Args) extends Job(args) {
  TextLine( args("input") )
    .read
    .flatMap('line -> 'word) {
      line: String => line.trim.toLowerCase.split("\\W+") 
    }
    .groupBy('word) { group => group.size('count) }
  }
  .write(Tsv(args("output")))
}

That’s It!!

Tuesday, December 4, 12
This Scala code is almost pure domain logic with very little boilerplate. There are a few minor differences in the implementation. You don’t explicitly specify the 
“Hfs” (Hadoop Distributed File System) taps. That’s handled by Scalding implicitly when you run in “non-local” model. Also, I’m using a simpler tokenization 
approach here, where I split on anything that isn’t a “word character” [0-9a-zA-Z_].
There is little green, in part because Scala infers type in many cases. There is a lot more yellow for the functions that do real work!
What if MapReduce, and hence Cascading and Scalding, went obsolete tomorrow? This code is so short, I wouldn’t care about throwing it away! I invested little 
time writing it, testing it, etc.
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• Crunch	  (Java)	  & 
Scrunch	  (Scala)

• Scoobi	  (Scala)
• ...

Other	  Improved	  APIs:
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See https://github.com/cloudera/crunch.
Others include Scoobi (http://nicta.github.com/scoobi/) and Spark, which we’ll discuss next.
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Use	  Spark (Scala)

(SoluCon	  #3)

Tuesday, December 4, 12
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• Distributed	  compuCng	  with	  
in-‐memory	  caching.

• Up	  to	  30x	  faster	  than	  
MapReduce.

Spark	  is	  an	  AlternaCve	  to	  
Hadoop	  MapReduce:
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See http://www.spark-project.org/
Why isn’t it more widely used? 1) lack of commercial support, 2) only recently emerged out of 
academia.
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• Originally	  designed	  for	  
machine	  learning	  
applicaCons.

Spark	  is	  an	  AlternaCve	  to	  
Hadoop	  MapReduce:

Tuesday, December 4, 12
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object WordCountSpark {
  def main(args: Array[String]) {
    val file = spark.textFile(args(0))
    val counts = file.flatMap(line => line.split("\\W+"))
                     .map(word => (word, 1))
                     .reduceByKey(_ + _)
    counts.saveAsTextFile(args(1))
  }
}

Even more succinct. 
Note that there are only 3 explicit types required.

Tuesday, December 4, 12
This spark example is actually closer in a few details, i.e., function names used, to the original Hadoop Java API example, but it cuts down boilerplate to the bare 
minimum.



It’s	  not	  suitable	  for	  
“real-‐Sme”

event	  processing.

#3
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For typical web/enterprise systems, “real-time” is up to 100s of milliseconds, so I’m using 
the term broadly (but following common practice in this industry). True real-time systems, 
such as avionics, have much tighter constraints.



Storm!
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Storm	  implements	  
reliable,	  distributed	  

“real-‐Sme”
event	  processing.
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http://storm-project.net/ Created by Nathan Marz, now at Twitter, who also created 
Cascalog, the Clojure wrapper around Cascading with added Datalog (logic programming) 
features.



Spout

Bolt

Bolt

Bolt

BoltSpout
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In Storm terminology, Spouts are data sources and bolts are the event processors. There are 
facilities to support reliable message handling, various sources encapsulated in Sprouts and 
various targets of output. Distributed processing is baked in from the start.



Databases?
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• Since	  databases	  are	  designed	  for	  
fast,	  transacConal	  updates,	  
consider	  a	  database	  for	  	  	  	  	  	  	  	  	  
event	  processing.

	  SQL	  	  or	  NoSQL	  
Databases?
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Use a SQL database unless you need the scale and looser schema of a NoSQL database!



It’s	  not	  ideal	  for	  
graph	  processing.

#4
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• Google	  invented	  MapReduce,

• …	  but	  MapReduce	  is	  not	  ideal	  for	  
Page	  Rank	  and	  other	  graph	  
algorithms.	  

	  Google’s	  Page	  Rank
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Recall that PageRank is the famous algorithm invented by Sergey Brin and Larry Page to index 
the web. It’s the foundation of Google’s search engine.
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• 1	  MR	  job	  for	  each	  
iteraCon	  that	  updates	  
all	  n	  nodes/edges.

• Graph	  saved	  to	  disk	  
ajer	  each	  iteraCon.

• ...

Why	  not	  MapReduce?

C

E

A

D

F

B
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The presentation http://www.slideshare.net/shatteredNirvana/pregel-a-system-for-
largescale-graph-processing
itemizes all the major issues with using MR to implement graph algorithms.
In a nutshell, a job with a map and reduce phase is waaay to course-grained...
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Use	  Graph	  Processing

(SoluCon	  #4)
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A good summary presentation: http://www.slideshare.net/shatteredNirvana/pregel-a-system-for-largescale-graph-processing
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• Pregel:	  New	  graph	  framework	  for	  
Page	  Rank.

• Bulk,	  Synchronous	  Parallel	  (BSP).

• Graphs	  are	  first-‐class	  ciCzens.

• Efficiently	  processes	  updates...	  

	  Google’s	  Pregel
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Pregel is intended to replace MR for PageRank, but I’ve heard they haven’t actually been able 
to switch over to it yet. “Pregel” is the river that runs through the city of Königsberg, Prussia 
(now called Kaliningrad, Ukraine). 7 bridges crossed the river in the city (including to 5 to 2 
islands between river branches). Leonhard Euler invented graph theory when he analyzed the 
question of whether or not you can cross all 7 bridges without retracing your steps (you 
can’t).
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• Apache	  Giraph.

• Apache	  Hama.

• Aurelius	  Titan.

	  Open-‐source	  
AlternaCves

All are 
somewhat 
immature.
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http://incubator.apache.org/giraph/
http://hama.apache.org/
http://thinkaurelius.github.com/titan/
None is very mature nor has extensive commercial support.
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A Manifesto...
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To bring this altogether, I think we have opportunities for a better way...



Hadoop is the 
Enterprise Java Beans

 of our time.
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I worked with EJBs a decade ago. The framework was completely invasive into your business logic. There were too many configuration options in 
XML files. The framework “paradigm” was a poor fit for most problems (like soft real time systems and most algorithms beyond Word Count). 
Internally, EJB implementations were inefficient and hard to optimize, because they relied on poorly considered object boundaries that muddled 
more natural boundaries. (I’ve argued in other presentations and my “FP for Java Devs” book that OOP is a poor modularity tool…) 
The fact is, Hadoop reminds me of EJBs in almost every way. It’s a 1st generation solution that mostly works okay and people do get work done 
with it, but just as the Spring Framework brought an essential rethinking to Enterprise Java, I think there is an essential rethink that needs to 
happen in Big Data, specifically around Hadoop. The functional programming community, is well positioned to create it...



Stop using Java!
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Java has taken us a long way and made many organizations successful over the years. Also, the JVM remains one of our most valuable tools in all of 
IT. But the language is really wrong for data purposes and its continued use by Big Data vendors is slowing down overall progress, as well as 
application developer productivity, IMHO. Java emphasizes the wrong abstractions, objects instead of mathematically-inspired functional 
programming constructs, and Java encourages inflexible bloat because it’s verbose compared to more modern alternatives and objects (at least 
class-based ones…) are far less reusable and flexible than people realize. They also contribute to focusing on the wrong concepts, structure 
instead of behavior.



Use Functional 
Languages.

77
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Why is Functional Programming better for Big Data? The work we do with data is inherently mathematical transformations and FP is inspired by 
math. Hence, it’s naturally a better fit, much more so than object-oriented programming. And, modern languages like Scala, Clojure, Erlang, F#, 
OCaml, and Haskell are more concise and better at eliminating boilerplate, while still providing excellent performance.

Note that one reason SQL has succeeded all these years is because it is also inspired by math, e.g., set theory.



Understand 
Functional Collections.
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We already have the right model in the collection APIs that come with functional languages. They are far better engineered for intuitive data 
transformations. They provide the right abstractions and hide boilerplate. In fact, they make it relatively easy to optimize implementations for 
parallelization. The Scala collections offer parallelization with a tiny API call. Spark and Cascading transparently distribute collections across a 
cluster.



Erlang, Akka:
Actor-based, 
Distributed 

Computation

Fine Grain
 Compute Models.
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We can start using new, more efficient compute models, like Spark, Pregel, and Impala today. Of course, you have to consider maturity, viability, 
and support issues in large organizations. So if you want to wait until these alternatives are more mature, then at least use better APIs for Hadoop! 
For example, Erlang is a very mature language with the Actor model backed in. Akka is a Scala distributed computing model based on the Actor 
model of concurrency. It exposes clean, low-level primitives for robust, distributed services (e.g., Actors), upon which we can build flexible big data 
systems that can handle soft real time and batch processing efficiently and with great scalability.



Final Thought:

80

Tuesday, December 4, 12
A final thought about Big Data...



QuesCons?
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