
The Properties of Riak

John Hughes

Chalmers University/Quviq AB, Gothenburg

(with Scott Lystig Fritchie, Jon Meredith,
Dave Smith)

• Distributed

• Scalable

• Replicated

• Fault-tolerant

• High availability

• Low latency

• No SQL—just keys and values

How can we
be sure Riak
is correct?

What does
that even

mean?

QuickCheck!

Keep It Simple!

one one

Put and Get

0
put

get
0
1

put

get
1

Quick
Check

Test
case

put
get
put
get
put
put
get

Model
of the
State

State transition
function

postconditions

Example

0
put

get
?

1
put

0
put

new

new

update

get
1

Vector
clocks

You
shouldn’t
do that!

I wonder if
our users

know that?

We didn’t
realise we

could lose data
that way.

Should we put
vector clocks

into the model?

Formalise ”You shouldn’t do that!”

• Add to the model:
– Client’s last view of the value (result of get)

• Add a precondition:
– Every put must update the client’s view (if

present)

• QuickCheck generates tests respecting the
precondition

Conflicts

0
put

1
put

get
{0,1}

2
put

2
get

Modelling Conflicts

• The state is a list (actually bag) of values

• The client’s view is a list of values

• put replaces those values in the state

Example

0
put

 1
put

{0,1}
get

 2
put

3
put

???
get

{0,1,2,3}
get

A vector clock
optimisation…

Modelling Conflicts

• The state is a list (actually bag) of values

• The client’s view is a list of values

• put replaces those values in the state

”fresh” or ”stale”

the state if the client’s view was fresh

adds a conflict if the client’s view was stale

Redundancy and Fault Tolerance

0
put

0

0

0 0

1
put

1

1

1

0

handoff

1

Testing Eventual Consistency

 put
get
put
get

arbitrary
fallbacks

handoff
handoff
handoff

until no more
are possible

get This should see a
consistent state

Should we model
the locations of

values?

Modelling Eventual Consistency

• A value may appear in the final get, if it was
ever put

• A value must appear in the final get, if it was
put, and never replaced

0
put

0
get

0
get

1
put

2
put

0

notfound

{1,2}
get

1
get

1

1

1

SHOCK!!
HORROR!

Riak is not eventually consistent!

What does it mean?

• QuickCheck found…

– An extreme failure scenario

• Two quite different failures in a short interval

– Leading to loss of data

– A failure of eventual consistency

• So does this mean

 Riak is buggy?

QuickCheck…

• …let us gradually develop a specification,
validated against the implementation

• …revealed potentially serious bugs

• …guided the development of alternative
solutions that fix the problems

understanding what
”correct” means

GOOD

NEWS!!
Riak IS eventually consistent!
— (at least partially) thanks to QuickCheck 

