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• Distributed 

• Scalable 

• Replicated  

• Fault-tolerant 

• High availability 

• Low latency 

• No SQL—just keys and values 



How can we 
be sure Riak 
is correct?  

What does 
that even 

mean?  

QuickCheck! 
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Example 
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Vector 
clocks 

You 
shouldn’t 
do that! 

I wonder if 
our users 

know that? 

We didn’t 
realise we 

could lose data 
that way. 



 

Should we put 
vector clocks 

into the model? 



Formalise ”You shouldn’t do that!” 

• Add to the model: 
– Client’s last view of the value (result of get) 

 

• Add a precondition: 
– Every put must update the client’s view (if 

present) 

 

• QuickCheck generates tests respecting the 
precondition 



Conflicts 
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Modelling Conflicts 

• The state is a list (actually bag) of values 

 

• The client’s view is a list of values 

 

• put replaces those values in the state 



Example 
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A vector clock 
optimisation… 



Modelling Conflicts 

• The state is a list (actually bag) of values 

 

• The client’s view is a list of values 

 

• put replaces those values in the state 

”fresh” or ”stale” 

the state if the client’s view was fresh 

adds a conflict if the client’s view was stale 



Redundancy and Fault Tolerance 
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Testing Eventual Consistency 
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until no more 
are possible 

get This should see a 
consistent state 



 

Should we model 
the locations of 

values? 



Modelling Eventual Consistency 

 

• A value may appear in the final get, if it was 
ever put 

 

• A value must appear in the final get, if it was 
put, and never replaced 
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SHOCK!! 
HORROR! 

Riak is not eventually consistent! 



What does it mean? 

• QuickCheck found… 

– An extreme failure scenario 

• Two quite different failures in a short interval 

– Leading to loss of data 

– A failure of eventual consistency 

 

• So does this mean  

    Riak is buggy? 



QuickCheck… 

• …let us gradually develop a specification, 
validated against the implementation 

 

• …revealed potentially serious bugs 

 

• …guided the development of alternative 
solutions that fix the problems 

understanding what 
”correct” means 



GOOD 

NEWS!! 
Riak IS eventually consistent! 
— (at least partially) thanks to QuickCheck  


