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Automatic Replication & Distribution

for Fault-tolerance & Scalability
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® Never think In terms of shared state, state
visibility, threads, locks, concurrent collections,
thread notifications etc.

® | ow level concurrency plumbing BECOMES
SIMPLE WORKFLOW - you only think about how
messages flow In the system

® You get high CPU utilization, low latency, high
throughput and scalability - FOR FREE as part of
the model

® Proven and superior model for detecting and
recovering from errors
A\
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Distributable by Design

® Actors are location transparent & distributable by design
® Scale UP and OUT for free as part of the model
® You get the PERFECT FABRIC for the CLOUD

— elastic & dynamic
— fault-tolerant & self-healing
— adaptive load-balancing, cluster rebalancing & actor migration

— build extremely loosely coupled and dynamic systems that can
change and adapt at runtime
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VWhat I1s an Actor?

Akka's unit of code organization is called an Actor

Actors helps you create concurrent, scalable and
fault-tolerant applications

Like Java EE servlets and session beans, Actors Is a
model for organizing your code that keeps many
"policy decisions’” separate from the business logic

Actors may be new to many in the Java community,
but they are a tried-and-true concept (Hewitt 197/3)

used for many years In telecom systems with 9 nines
uptime
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VWhat can | use Actors for?

In different scenarios, an Actor may be an
alternative to:

- a thread

— an object instance or component
— a callback or listener

—- asingleton or service

- a router, load-balancer or pool
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In different scenarios, an Actor may be an
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VWhat can | use Actors for?

In dr

alternative to:

a thread

ferent scenarios, an Actor may be an

an object instance or component

a callback or listener
a singleton or service
a router, load-balancer or
a Java EE Session Bean or

an out-of-process service

DOO|

Vessage-Driven Bean

2\

a Finrte State Machine (FSM) akka



S0, what Is the

Model?



itt-on-actors



http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Rad

b @
-

itt-on-actors



http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Rad

b @
-

itt-on-actors



http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Rad

b @
-

itt-on-actors



http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

>

i

torage

= C'\ nication

Rad

b @
-

itt-on-actors



http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

L
torage

" C'\ nication

- 3 axioms - When ar recelives a message It can:

itt-on-actors



http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

w 5
- Storage
- C'\ glfeciile]p
— 3 axioms - When ar

- Create new Actors

receives a message It can:



http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

w . S
rage
= C'1 nication

- 3 axioms - VWhen an

— Create new Actdifes

recelives a message It can:

- Send messages to Actors I



http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

w

torage

- C'\ nication
— 3 axioms - When an

— Create new Actors

- Send messages to Actors I

recelives a message It can:

‘s

e next message it rece

-

itt-on-actors



http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

4 core Actor operations

. CREAT
2. SEND
3. BECOME

4. SUPERVISE
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0. DEFINE

/

case class Greeting(who: String)

~

class GreetingActor extends Actor with ActorlLogging {

}

\_

def receive = {
case Greeting(who) => log.info("Hello " + who)

}

/
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Define the message(s) the Actor
should be able to respond to
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def receive = {
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0. DEFINE

4 )

Define the message(s) the Actor
should be able to respond to
4 N/

/ V‘/ Define the Actor class
case class Greetin%q. ST IITyT /

~

class GreetingActor extends Actor with ActorlLogging {

def receive = {
case Greeting(who) => log.info("Hello " + who)

¢\

/
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| CREAITE

® CREATE - creates a new instance of an Actor

® xtremely lightweight (2.7 Million per Gb RAM)

® \ery strong encapsulation - encapsulates:
- state
- behavior

—  message queue
® State & behavior is Indistinguishable from each other

® Only way to observe state Is by sending an actor a

message and see how It reacts

4N
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val system = ActorSystem('"MySystem") /444;/

val greeter = system.actorOf(Props[GreetingActor], name
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N
Create an Actor system(A

val system = ActorSystem('"MySystem") /

val greeter = system.actorOf(Props[GreetingActor], name = "greeter")
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CREATE Actor

4 )

N
Create an Actor system(A

val system = ActorSystem('"MySystem") /

val greeter = system.actorOf(Props[GreetingActor], name = "greeter")

N N a

You get an ActorRef bac|<)ate the ACtO'”] [ Give it a name

-

ctor conﬂgurationj
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Actors can form hierarchies
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Actors can form hierarchies

Guardian System Actor

I

| context.actorOf(Prop[,“A”) |

j;




Actors can form hierarchies

Guardian System Actor

@ context.actorOf(Props[A],“A”) |




Actors can form hierarchies

Guardian System Actor
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Name resolution - like a file-system

Guardian System Actor
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2. SEND

® SEND - sends a message to an Actor

® Asynchronous and Non-blocking - Fire-forget
® EVERY THING is asynchronous and lockless
® verything happens Reactively

- An Actor is passive until a message Is sent to I,
which triggers something within the Actor

- Messages Is the Kinetic Energy in an Actor system

- Actors can have lots of buffered Potential Energy
but can't do anything with 1t until it i1s triggered by

d MesSsSage
: AN
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SEND messa

-

//:ase class Greeting(who: String)

class GreetingActor extends Actor with ActorlLogging {
def receive = {
case Greeting(who) => log.info("Hello " + who)

}
}

val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props[GreetingActor], name
\\greeter | Greeting("Charlie Parker")

"greeter")

v
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SEND messa

-

//:ase class Greeting(who: String)

class GreetingActor extends Actor with ActorlLogging {
def receive = {
case Greeting(who) => log.info("Hello " + who)

}
}

val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props[GreetingActor], name
\\greeter | Greeting("Charlie Parker")

"greeter")

v

Sendtherneﬁﬁg%)
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~ull example

//;ase class Greeting(who: String) ‘\\

class GreetingActor extends Actor with ActorLogging {

def receive = {
case Greeting(who) => log.info("Hello " + who)

I3
I3
val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props|[GreetingActor], name = "greeter")
\\?reeter ! Greeting("Charlie Parker") 4//

'\
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Routers

-~

val router =
system.actorOf (
Props [SomeActor].withRouter
RoundRobinRouter(nrOfInstances

5)))

~

/
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Router + Resizer

-~

val resizer =

DefaultResizer(lowerBound = 2, upperBound = 15)

val router =

system.actorOf(
Props [ExampleActorl].withRouter
RoundRobinRouter(resizer = Some(resizer))))

~

/

2\
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...or from contig

4 )
akka.actor.deployment {

/path/to/actor {
router = round-robin
nr—-of—-instances = 5

+

}
\_ /




...or from contig

4 )
akka.actor.deployment {

/path/to/actor {
router = round-robiln
resizer {

lower—-bound
upper—-bound

}

12
15

}
}

\_
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3. BECOME

® BECOME - dynamically redefines Actor’s behavior

® [riggered reactively by receive of message

n a type system analogy

type - changed Interface,

it Is as If the object changed

brotocol & implementation

® Will now react differently to the messages It receives

® Behaviors are stacked & can be pushed and popped

=== Typesafe
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Why would | want to do that!

® | et 3 highly contended Actor adaptively transform
tself iInto an Actor Pool or a Router

® |[mplement an FSM (Finrte State Machine)
® |mplement graceful degradation

® Spawn up (empty) generic Worker processes that
can become whatever the Master currently needs

® Other: Use your imagination!

® \ery useful once you get the used to It

A\
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context become { *\\
// new body
case NewMessage =>

¥
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Fallure Recovery In Java/C/C# etc.

* You are given a SINGLE thread of control
* [f this thread blows up you are screwed

* S0 you need to do all explicit error handling
WITHIN this single thread

* [o make things worse - errors do not propagate
between threads so there 1s NO WAY OF EVEN
FINDING OUT that something have failed

* This leads to DEFENSIVE programming with:
* Error handling TANGLED with business logic
 SCAITTERED all over the code base

VWe can do better than this!!!

== Typesafe
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® SUPERVISE - manage another Actor's failures

® trror handling in actors Is handle by letting
Actors monitor (supervise) each other for

fallure

® [ his means that
notification will

f an Ac

'Or crashes, a

De sent |

can react upon -

=== Typesafe
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4. SUPERVISE

® SUPERVISE - manage an

® trror handling in actors
Actors monitor (supervi
fallure

® [his means that If an Ac

other Actor’s fallures

s handle by letting
se) each other for

'Or crashes, a

notification will be sent -

[0 NIS sUpervisor, who

can react upon the failure

® [his provides clean separation of processing

and error handling

=== Typesafe

2\
akka









ERROR
KERNEL




ERROR
KERNEL

akka



ERROR
KERNEL




=== Typesafe akka



ERROR
KERNEL

2\

=== Typesafe akka



NODE 1 NODE 2

O L

)
Akka



SUPERVISE Actor

Fve

"y S|

defaL
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ngle actor has a

Dervisor strategy.

Which s usually sufficient.
But it can be overridden.
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SUPERVISE Actor

tvery single actor has a
default supervisor strategy.
Which s usually sufficient.

But it can be overridden.

//;1ass Supervisor extends Actor {
override val supervisorStrategy =

case _: ArithmeticException => Resume
case _: NullPointerException => Restart

c?se _: Exception => Escalate
qF?Tnpesa1e

~

(maxNrOfRetries = 10, withinTimeRange = 1 minute) {
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SUPERVISE Actor

//;1ass Supervisor extends Actor {

override val supervisorStrategy =
(maxNrOfRetries = 10, withinTimeRange = 1 minute) {

case _: ArithmeticException => Resume
case _: NullPointerException => Restart
case _: Exception => Escalate

}

val worker = context.actorOf(Props[Worker])

def receive = {
case n: Int => worker forward n

A\
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Manage faillure

class Worker extends Actor {

override def preRestart(
reason: Throwable, message: Option[Any]) {
... // clean up before restart

s

override def postRestart(reason: Throwable) {

. // 1nit after restart

\ .

~

/
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Remote deployment

Just feed the ActorSystem with this configuration

//;kka { ‘\\
actor {
provider = akka.remote.RemoteActorRefProvider
deployment <
/greeter {
remote =
}
}
s
. Y,
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Remote deployment

Just feed the ActorSystem with this configuration

-

akka {

actor {
provider =
deployment
/greeter
remote

akka.remote.RemoteActorRefProvider

{
{

4
E Configure a Remote Provider )
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Remote deployment

Just feed the ActorSystem with this configuration

e
( Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote =
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Remote deployment

Just feed the ActorSystem with this configuration

/7
( Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote =
)

Define Remote Path
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Remote deployment

Just feed the ActorSystem with this configuration

/7
( Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote = akka://

)
Define Remote Path Protocol
2\
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Remote deployment

Just feed the ActorSystem with this configuration

/7
( Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote = akka://MySystem

)
Define Remote Path Protocol Actor System
A\
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Remote deployment

Just feed the ActorSystem with this configuration

/7
( Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote = akka://MySystem@machinel

_J \
Define Remote Path Protocol Actor System | Hostname ’
A\
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Remote deployment

Just feed the ActorSystem with this configuration

/7
( Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote = akka://MySystem@machinel:2552

_J /\
Define Remote Path Protocol Actor System | Hostname ’ m
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Remote deployment

Just feed the ActorSystem with this configuration

/7
( Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote = akka://MySystem@machinel:2552

_J /\
Define Remote Path Protocol Actor System | Hostname ’ m

Zero code changes PN
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Remote Lookup

val greeter = system.actorFor(
"akka://MySystem@machinel:2552/user/greeter")

2\
akka



Can you see the
¢



Fixed Addresses

akka { ‘\\
actor A
provider = akka.remote.RemoteActorRefProvider
deployment <
/greeter {

remote = akka://MySystem@machinel:2552

/

=== Typesafe

val greeter = system.actorFor(
"akka://MySystem@machinel:2552/user/greeter")

2\
akka






=== Typesafe

Features

Gossip-based Cluster Membership

| eader determination

Accrual Fallure Detector

Cluster DeathWatch

Cluster-Aware Routers

2\
akka



cnable clustering

-

¥

\_

~

akka {
actor {
provider = "akka.cluster.ClusterActorRefProvider"
I3
extensions = ["akka.cluster.Cluster"]
cluster {

seed-nodes = |
"akka://ClusterSystem@l27.0.0.1:2551",
"akka://ClusterSystem@l27.0.0.1:2552"
]

auto—-down = on

}

o= Typesafe
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mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1

Configure a clustered router

o= Typesafe

akka.actor.deployment {
/statsService/workerRouter {
router = consistent-hashing
nr-of-instances = 100

cluster {
enabled = on

~

max-nr—-of-instances—-per—-node = 3

allow-local-routees = on

¥

/

2\
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Console

free for developers later in the fall




o

Search (or ‘help’)







=== Typesafe

ve demo
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http://console-demo.typesafe.com
http://console-demo.typesafe.com

we have



we have

- FSM
-ventBus TactKit
Pub/Sub
Durable Mailboxes
1O

| Camel

Microkernel SLF4
TypedActor
/eroMQ Yataflow Transactors

Agents -Xtensions



http://akka.lo
http://letitcrash.com
http://typesate.com


http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
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rule them all
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The Magic Sauce

* User code only sees cluster://... names

o ActorRef becomes repointable

— local (current ActorCell)
— remote (new RemoteActorCell)

* (Can now move actors around transparently

— Actor encapsulation makes 1t possible

A\
=== Typesafe akka



VWhat does this enable?

* Actor migration
* Actor replication

* Automatic cluster partitioning

— |ater also based on runtime metrics

 Node faill-over

— first for stateless actors
— later for stateful actors using event sourcing

=> Fault Tolerance & Distribution
AN
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