
Jonas Bonér
CTO

@jboner

Scaling
software with

Scaling
software with
Scaling
software with

Scaling
software with
Scaling
software with

Copyright Ingeborg van Leeuwen

Selection of Akka Production Users

Manage System Overload

Automatic Replication & Distribution

for Fault-tolerance & Scalability

Program at a Higher Level

Program at a Higher Level

Program at a Higher Level
• Never think in terms of shared state, state

visibility, threads, locks, concurrent collections,
thread notifications etc.

Program at a Higher Level
• Never think in terms of shared state, state

visibility, threads, locks, concurrent collections,
thread notifications etc.

• Low level concurrency plumbing BECOMES
SIMPLE WORKFLOW - you only think about how
messages flow in the system

Program at a Higher Level
• Never think in terms of shared state, state

visibility, threads, locks, concurrent collections,
thread notifications etc.

• Low level concurrency plumbing BECOMES
SIMPLE WORKFLOW - you only think about how
messages flow in the system

• You get high CPU utilization, low latency, high
throughput and scalability - FOR FREE as part of
the model

Program at a Higher Level
• Never think in terms of shared state, state

visibility, threads, locks, concurrent collections,
thread notifications etc.

• Low level concurrency plumbing BECOMES
SIMPLE WORKFLOW - you only think about how
messages flow in the system

• You get high CPU utilization, low latency, high
throughput and scalability - FOR FREE as part of
the model

• Proven and superior model for detecting and
recovering from errors

Distributable by Design

Distributable by Design

Distributable by Design

• Actors are location transparent & distributable by design

Distributable by Design

• Actors are location transparent & distributable by design

• Scale UP and OUT for free as part of the model

Distributable by Design

• Actors are location transparent & distributable by design

• Scale UP and OUT for free as part of the model

• You get the PERFECT FABRIC for the CLOUD

Distributable by Design

• Actors are location transparent & distributable by design

• Scale UP and OUT for free as part of the model

• You get the PERFECT FABRIC for the CLOUD

- elastic & dynamic

Distributable by Design

• Actors are location transparent & distributable by design

• Scale UP and OUT for free as part of the model

• You get the PERFECT FABRIC for the CLOUD

- elastic & dynamic

- fault-tolerant & self-healing

Distributable by Design

• Actors are location transparent & distributable by design

• Scale UP and OUT for free as part of the model

• You get the PERFECT FABRIC for the CLOUD

- elastic & dynamic

- fault-tolerant & self-healing

- adaptive load-balancing, cluster rebalancing & actor migration

Distributable by Design

• Actors are location transparent & distributable by design

• Scale UP and OUT for free as part of the model

• You get the PERFECT FABRIC for the CLOUD

- elastic & dynamic

- fault-tolerant & self-healing

- adaptive load-balancing, cluster rebalancing & actor migration

- build extremely loosely coupled and dynamic systems that can
change and adapt at runtime

How
can we achieve this?

How
can we achieve this?

How
can we achieve this?

Let’s use Actors

What is an Actor?

What is an Actor?

• Akka's unit of code organization is called an Actor

What is an Actor?

• Akka's unit of code organization is called an Actor

• Actors helps you create concurrent, scalable and
fault-tolerant applications

What is an Actor?

• Akka's unit of code organization is called an Actor

• Actors helps you create concurrent, scalable and
fault-tolerant applications

• Like Java EE servlets and session beans, Actors is a
model for organizing your code that keeps many
“policy decisions” separate from the business logic

What is an Actor?

• Akka's unit of code organization is called an Actor

• Actors helps you create concurrent, scalable and
fault-tolerant applications

• Like Java EE servlets and session beans, Actors is a
model for organizing your code that keeps many
“policy decisions” separate from the business logic

• Actors may be new to many in the Java community,
but they are a tried-and-true concept (Hewitt 1973)
used for many years in telecom systems with 9 nines
uptime

What can I use Actors for?

What can I use Actors for?
In different scenarios, an Actor may be an
alternative to:

What can I use Actors for?
In different scenarios, an Actor may be an
alternative to:

- a thread

What can I use Actors for?
In different scenarios, an Actor may be an
alternative to:

- a thread

- an object instance or component

What can I use Actors for?
In different scenarios, an Actor may be an
alternative to:

- a thread

- an object instance or component

- a callback or listener

What can I use Actors for?
In different scenarios, an Actor may be an
alternative to:

- a thread

- an object instance or component

- a callback or listener

- a singleton or service

What can I use Actors for?
In different scenarios, an Actor may be an
alternative to:

- a thread

- an object instance or component

- a callback or listener

- a singleton or service

- a router, load-balancer or pool

What can I use Actors for?
In different scenarios, an Actor may be an
alternative to:

- a thread

- an object instance or component

- a callback or listener

- a singleton or service

- a router, load-balancer or pool

- a Java EE Session Bean or Message-Driven Bean

What can I use Actors for?
In different scenarios, an Actor may be an
alternative to:

- a thread

- an object instance or component

- a callback or listener

- a singleton or service

- a router, load-balancer or pool

- a Java EE Session Bean or Message-Driven Bean

- an out-of-process service

What can I use Actors for?
In different scenarios, an Actor may be an
alternative to:

- a thread

- an object instance or component

- a callback or listener

- a singleton or service

- a router, load-balancer or pool

- a Java EE Session Bean or Message-Driven Bean

- an out-of-process service

- a Finite State Machine (FSM)

So, what is the

Actor Model?

Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

- The fundamental unit of computation that embodies:

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

- The fundamental unit of computation that embodies:

- Processing

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

- The fundamental unit of computation that embodies:

- Processing

- Storage

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

- The fundamental unit of computation that embodies:

- Processing

- Storage

- Communication

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

- The fundamental unit of computation that embodies:

- Processing

- Storage

- Communication

- 3 axioms - When an Actor receives a message it can:

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

- The fundamental unit of computation that embodies:

- Processing

- Storage

- Communication

- 3 axioms - When an Actor receives a message it can:

- Create new Actors

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

- The fundamental unit of computation that embodies:

- Processing

- Storage

- Communication

- 3 axioms - When an Actor receives a message it can:

- Create new Actors

- Send messages to Actors it knows

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

- The fundamental unit of computation that embodies:

- Processing

- Storage

- Communication

- 3 axioms - When an Actor receives a message it can:

- Create new Actors

- Send messages to Actors it knows

- Designate how it should handle the next message it receives

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

4 core Actor operations

0. DEFINE

1. CREATE

2. SEND

3. BECOME

4. SUPERVISE

0. DEFINE

case class Greeting(who: String)

class GreetingActor extends Actor with ActorLogging {
 def receive = {
 case Greeting(who) => log.info("Hello " + who)
 }
}

0. DEFINE
Define the message(s) the Actor

should be able to respond to

case class Greeting(who: String)

class GreetingActor extends Actor with ActorLogging {
 def receive = {
 case Greeting(who) => log.info("Hello " + who)
 }
}

0. DEFINE
Define the message(s) the Actor

should be able to respond to

case class Greeting(who: String)

class GreetingActor extends Actor with ActorLogging {
 def receive = {
 case Greeting(who) => log.info("Hello " + who)
 }
}

Define the Actor class

0. DEFINE
Define the message(s) the Actor

should be able to respond to

case class Greeting(who: String)

class GreetingActor extends Actor with ActorLogging {
 def receive = {
 case Greeting(who) => log.info("Hello " + who)
 }
}

Define the Actor class

Define the Actor’s behavior

1. CREATE
• CREATE - creates a new instance of an Actor

• Extremely lightweight (2.7 Million per Gb RAM)

• Very strong encapsulation - encapsulates:

- state

- behavior

- message queue

• State & behavior is indistinguishable from each other

• Only way to observe state is by sending an actor a
message and see how it reacts

CREATE Actor
case class Greeting(who: String)

class GreetingActor extends Actor with ActorLogging {
 def receive = {
 case Greeting(who) => log.info("Hello " + who)
 }
}

val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props[GreetingActor], name = "greeter")

CREATE Actor
case class Greeting(who: String)

class GreetingActor extends Actor with ActorLogging {
 def receive = {
 case Greeting(who) => log.info("Hello " + who)
 }
}

val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props[GreetingActor], name = "greeter")

Create an Actor system

CREATE Actor
case class Greeting(who: String)

class GreetingActor extends Actor with ActorLogging {
 def receive = {
 case Greeting(who) => log.info("Hello " + who)
 }
}

val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props[GreetingActor], name = "greeter")

Create an Actor system Actor configuration

CREATE Actor
case class Greeting(who: String)

class GreetingActor extends Actor with ActorLogging {
 def receive = {
 case Greeting(who) => log.info("Hello " + who)
 }
}

val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props[GreetingActor], name = "greeter")

Give it a name

Create an Actor system Actor configuration

CREATE Actor

Create the Actor

case class Greeting(who: String)

class GreetingActor extends Actor with ActorLogging {
 def receive = {
 case Greeting(who) => log.info("Hello " + who)
 }
}

val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props[GreetingActor], name = "greeter")

Give it a name

Create an Actor system Actor configuration

CREATE Actor

Create the Actor

case class Greeting(who: String)

class GreetingActor extends Actor with ActorLogging {
 def receive = {
 case Greeting(who) => log.info("Hello " + who)
 }
}

val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props[GreetingActor], name = "greeter")

Give it a nameYou get an ActorRef back

Create an Actor system Actor configuration

Guardian System Actor

Actors can form hierarchies

Guardian System Actor

system.actorOf(Props[Foo], “Foo”)

Actors can form hierarchies

Foo

Guardian System Actor

system.actorOf(Props[Foo], “Foo”)

Actors can form hierarchies

Foo

Guardian System Actor

context.actorOf(Props[A], “A”)

Actors can form hierarchies

A

Foo

Guardian System Actor

context.actorOf(Props[A], “A”)

Actors can form hierarchies

A

B

BarFoo

C

B
E

A

D

C

Guardian System Actor

Actors can form hierarchies

A

B

BarFoo

C

B
E

A

D

C

Guardian System Actor

Name resolution - like a file-system

A

B

BarFoo

C

B
E

A

D

C

/Foo

Guardian System Actor

Name resolution - like a file-system

A

B

BarFoo

C

B
E

A

D

C

/Foo

/Foo/A

Guardian System Actor

Name resolution - like a file-system

A

B

BarFoo

C

B
E

A

D

C

/Foo

/Foo/A

/Foo/A/B

Guardian System Actor

Name resolution - like a file-system

A

B

BarFoo

C

B
E

A

D

C

/Foo

/Foo/A

/Foo/A/B

/Foo/A/D

Guardian System Actor

Name resolution - like a file-system

2. SEND

2. SEND
• SEND - sends a message to an Actor

2. SEND
• SEND - sends a message to an Actor

• Asynchronous and Non-blocking - Fire-forget

2. SEND
• SEND - sends a message to an Actor

• Asynchronous and Non-blocking - Fire-forget

• EVERYTHING is asynchronous and lockless

2. SEND
• SEND - sends a message to an Actor

• Asynchronous and Non-blocking - Fire-forget

• EVERYTHING is asynchronous and lockless

• Everything happens Reactively

2. SEND
• SEND - sends a message to an Actor

• Asynchronous and Non-blocking - Fire-forget

• EVERYTHING is asynchronous and lockless

• Everything happens Reactively

- An Actor is passive until a message is sent to it,
which triggers something within the Actor

2. SEND
• SEND - sends a message to an Actor

• Asynchronous and Non-blocking - Fire-forget

• EVERYTHING is asynchronous and lockless

• Everything happens Reactively

- An Actor is passive until a message is sent to it,
which triggers something within the Actor

- Messages is the Kinetic Energy in an Actor system

2. SEND
• SEND - sends a message to an Actor

• Asynchronous and Non-blocking - Fire-forget

• EVERYTHING is asynchronous and lockless

• Everything happens Reactively

- An Actor is passive until a message is sent to it,
which triggers something within the Actor

- Messages is the Kinetic Energy in an Actor system

- Actors can have lots of buffered Potential Energy
but can't do anything with it until it is triggered by
a message

SEND message

case class Greeting(who: String)

class GreetingActor extends Actor with ActorLogging {
 def receive = {
 case Greeting(who) => log.info("Hello " + who)
 }
}

val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props[GreetingActor], name = "greeter")
greeter ! Greeting("Charlie Parker")

SEND message

Send the message

case class Greeting(who: String)

class GreetingActor extends Actor with ActorLogging {
 def receive = {
 case Greeting(who) => log.info("Hello " + who)
 }
}

val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props[GreetingActor], name = "greeter")
greeter ! Greeting("Charlie Parker")

case class Greeting(who: String)

class GreetingActor extends Actor with ActorLogging {
 def receive = {
 case Greeting(who) => log.info("Hello " + who)
 }
}

val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props[GreetingActor], name = "greeter")
greeter ! Greeting("Charlie Parker")

Full example

Routers

Load Balancing

Routers

val router =
 system.actorOf(
 Props[SomeActor].withRouter(
 RoundRobinRouter(nrOfInstances = 5)))

Router + Resizer

val resizer =
 DefaultResizer(lowerBound = 2, upperBound = 15)

val router =
 system.actorOf(
 Props[ExampleActor1].withRouter(
 RoundRobinRouter(resizer = Some(resizer))))

…or from config

 akka.actor.deployment {
 /path/to/actor {
 router = round-robin
 nr-of-instances = 5
 }
 }

…or from config

 akka.actor.deployment {
 /path/to/actor {
 router = round-robin
 resizer {
 lower-bound = 12
 upper-bound = 15
 }
 }
 }

3. BECOME

3. BECOME

• BECOME - dynamically redefines Actor’s behavior

3. BECOME

• BECOME - dynamically redefines Actor’s behavior

• Triggered reactively by receive of message

3. BECOME

• BECOME - dynamically redefines Actor’s behavior

• Triggered reactively by receive of message

• In a type system analogy it is as if the object changed
type - changed interface, protocol & implementation

3. BECOME

• BECOME - dynamically redefines Actor’s behavior

• Triggered reactively by receive of message

• In a type system analogy it is as if the object changed
type - changed interface, protocol & implementation

• Will now react differently to the messages it receives

3. BECOME

• BECOME - dynamically redefines Actor’s behavior

• Triggered reactively by receive of message

• In a type system analogy it is as if the object changed
type - changed interface, protocol & implementation

• Will now react differently to the messages it receives

• Behaviors are stacked & can be pushed and popped

Why would I want to do that?

Why would I want to do that?
• Let a highly contended Actor adaptively transform

itself into an Actor Pool or a Router

Why would I want to do that?
• Let a highly contended Actor adaptively transform

itself into an Actor Pool or a Router

• Implement an FSM (Finite State Machine)

Why would I want to do that?
• Let a highly contended Actor adaptively transform

itself into an Actor Pool or a Router

• Implement an FSM (Finite State Machine)

• Implement graceful degradation

Why would I want to do that?
• Let a highly contended Actor adaptively transform

itself into an Actor Pool or a Router

• Implement an FSM (Finite State Machine)

• Implement graceful degradation

• Spawn up (empty) generic Worker processes that
can become whatever the Master currently needs

Why would I want to do that?
• Let a highly contended Actor adaptively transform

itself into an Actor Pool or a Router

• Implement an FSM (Finite State Machine)

• Implement graceful degradation

• Spawn up (empty) generic Worker processes that
can become whatever the Master currently needs

• Other: Use your imagination!

Why would I want to do that?
• Let a highly contended Actor adaptively transform

itself into an Actor Pool or a Router

• Implement an FSM (Finite State Machine)

• Implement graceful degradation

• Spawn up (empty) generic Worker processes that
can become whatever the Master currently needs

• Other: Use your imagination!

• Very useful once you get the used to it

become

context become {
 // new body
 case NewMessage =>
 ...
}

Failure Recovery

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control

• If this thread blows up you are screwed

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control

• If this thread blows up you are screwed

• So you need to do all explicit error handling
WITHIN this single thread

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control

• If this thread blows up you are screwed

• So you need to do all explicit error handling
WITHIN this single thread

• To make things worse - errors do not propagate
between threads so there is NO WAY OF EVEN
FINDING OUT that something have failed

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control

• If this thread blows up you are screwed

• So you need to do all explicit error handling
WITHIN this single thread

• To make things worse - errors do not propagate
between threads so there is NO WAY OF EVEN
FINDING OUT that something have failed

• This leads to DEFENSIVE programming with:

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control

• If this thread blows up you are screwed

• So you need to do all explicit error handling
WITHIN this single thread

• To make things worse - errors do not propagate
between threads so there is NO WAY OF EVEN
FINDING OUT that something have failed

• This leads to DEFENSIVE programming with:

• Error handling TANGLED with business logic

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control

• If this thread blows up you are screwed

• So you need to do all explicit error handling
WITHIN this single thread

• To make things worse - errors do not propagate
between threads so there is NO WAY OF EVEN
FINDING OUT that something have failed

• This leads to DEFENSIVE programming with:

• Error handling TANGLED with business logic

• SCATTERED all over the code base

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control

• If this thread blows up you are screwed

• So you need to do all explicit error handling
WITHIN this single thread

• To make things worse - errors do not propagate
between threads so there is NO WAY OF EVEN
FINDING OUT that something have failed

• This leads to DEFENSIVE programming with:

• Error handling TANGLED with business logic

• SCATTERED all over the code base

We can do better than this!!!

Failure Recovery in Java/C/C# etc.

Just

LET IT CRASH

4. SUPERVISE

4. SUPERVISE
• SUPERVISE - manage another Actor’s failures

4. SUPERVISE
• SUPERVISE - manage another Actor’s failures

• Error handling in actors is handle by letting
Actors monitor (supervise) each other for
failure

4. SUPERVISE
• SUPERVISE - manage another Actor’s failures

• Error handling in actors is handle by letting
Actors monitor (supervise) each other for
failure

• This means that if an Actor crashes, a
notification will be sent to his supervisor, who
can react upon the failure

4. SUPERVISE
• SUPERVISE - manage another Actor’s failures

• Error handling in actors is handle by letting
Actors monitor (supervise) each other for
failure

• This means that if an Actor crashes, a
notification will be sent to his supervisor, who
can react upon the failure

• This provides clean separation of processing
and error handling

Fault-tolerant
onion-layered
Error Kernel

Error
Kernel

Error
Kernel

Error
Kernel

Error
Kernel

Error
Kernel

Error
Kernel

Error
Kernel

Node 1 Node 2

SUPERVISE Actor
Every single actor has a

default supervisor strategy.
Which is usually sufficient.
But it can be overridden.

class Supervisor extends Actor {
 override val supervisorStrategy =
 (maxNrOfRetries = 10, withinTimeRange = 1 minute) {
 case _: ArithmeticException => Resume
 case _: NullPointerException => Restart
 case _: Exception => Escalate
 }

 val worker = context.actorOf(Props[Worker])

 def receive = {
 case n: Int => worker forward n
 }
}

SUPERVISE Actor
Every single actor has a

default supervisor strategy.
Which is usually sufficient.
But it can be overridden.

class Supervisor extends Actor {
 override val supervisorStrategy =
 (maxNrOfRetries = 10, withinTimeRange = 1 minute) {
 case _: ArithmeticException => Resume
 case _: NullPointerException => Restart
 case _: Exception => Escalate
 }

 val worker = context.actorOf(Props[Worker])

 def receive = {
 case n: Int => worker forward n
 }
}

SUPERVISE Actor

class Worker extends Actor {
 ...

 override def preRestart(
 reason: Throwable, message: Option[Any]) {
 ... // clean up before restart
 }

 override def postRestart(reason: Throwable) {
 ... // init after restart
 }
}

Manage failure

Remoting

akka {
 actor {
 provider = akka.remote.RemoteActorRefProvider
 deployment {
 /greeter {
 remote =
 }
 }
 }
}

Just feed the ActorSystem with this configuration

Remote deployment

akka {
 actor {
 provider = akka.remote.RemoteActorRefProvider
 deployment {
 /greeter {
 remote =
 }
 }
 }
}

Just feed the ActorSystem with this configuration

Configure a Remote Provider

Remote deployment

akka {
 actor {
 provider = akka.remote.RemoteActorRefProvider
 deployment {
 /greeter {
 remote =
 }
 }
 }
}

Just feed the ActorSystem with this configuration

Configure a Remote Provider

For the Greeter actor

Remote deployment

akka {
 actor {
 provider = akka.remote.RemoteActorRefProvider
 deployment {
 /greeter {
 remote =
 }
 }
 }
}

Just feed the ActorSystem with this configuration

Configure a Remote Provider

Define Remote Path

For the Greeter actor

Remote deployment

akka {
 actor {
 provider = akka.remote.RemoteActorRefProvider
 deployment {
 /greeter {
 remote =
 }
 }
 }
}

Just feed the ActorSystem with this configuration

Configure a Remote Provider

Define Remote Path Protocol

For the Greeter actor

akka://

Remote deployment

akka {
 actor {
 provider = akka.remote.RemoteActorRefProvider
 deployment {
 /greeter {
 remote =
 }
 }
 }
}

Just feed the ActorSystem with this configuration

Configure a Remote Provider

Define Remote Path Protocol Actor System

For the Greeter actor

akka://MySystem

Remote deployment

akka {
 actor {
 provider = akka.remote.RemoteActorRefProvider
 deployment {
 /greeter {
 remote =
 }
 }
 }
}

Just feed the ActorSystem with this configuration

Configure a Remote Provider

Define Remote Path Protocol Actor System Hostname

For the Greeter actor

akka://MySystem@machine1

Remote deployment

akka {
 actor {
 provider = akka.remote.RemoteActorRefProvider
 deployment {
 /greeter {
 remote =
 }
 }
 }
}

Just feed the ActorSystem with this configuration

Configure a Remote Provider

Define Remote Path Protocol Actor System Hostname Port

For the Greeter actor

akka://MySystem@machine1:2552

Remote deployment

akka {
 actor {
 provider = akka.remote.RemoteActorRefProvider
 deployment {
 /greeter {
 remote =
 }
 }
 }
}

Just feed the ActorSystem with this configuration

Zero code changes

Configure a Remote Provider

Define Remote Path Protocol Actor System Hostname Port

For the Greeter actor

akka://MySystem@machine1:2552

Remote deployment

Remote Lookup

val greeter = system.actorFor(
 "akka://MySystem@machine1:2552/user/greeter")

Can you see the
problem?

Fixed Addresses
akka {
 actor {
 provider = akka.remote.RemoteActorRefProvider
 deployment {
 /greeter {
 remote = akka://MySystem@machine1:2552

 }
 }
 }
}

val greeter = system.actorFor(
 "akka://MySystem@machine1:2552/user/greeter")

Akka Cluster

Features

• Gossip-based Cluster Membership

• Leader determination

• Accrual Failure Detector

• Cluster DeathWatch

• Cluster-Aware Routers

Enable clustering
akka {
 actor {
 provider = "akka.cluster.ClusterActorRefProvider"
 ...
 }

 extensions = ["akka.cluster.Cluster"]

 cluster {
 seed-nodes = [
 "akka://ClusterSystem@127.0.0.1:2551",
 "akka://ClusterSystem@127.0.0.1:2552"
]

 auto-down = on
 }
}

mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1

Configure a clustered router

akka.actor.deployment	
 {
	
 	
 /statsService/workerRouter	
 {
	
 	
 	
 	
 router	
 =	
 consistent-­‐hashing
	
 	
 	
 	
 nr-­‐of-­‐instances	
 =	
 100

	
 	
 	
 	
 cluster	
 {
	
 	
 	
 	
 	
 	
 enabled	
 =	
 on
	
 	
 	
 	
 	
 	
 max-nr-of-instances-per-node = 3
	
 	
 	
 	
 	
 	
 allow-­‐local-­‐routees	
 =	
 on
	
 	
 	
 	
 }
	
 	
 }
}

Typesafe Console

free for developers later in the fall

Typesafe Console

free for developers later in the fall

http://console-demo.typesafe.com

live demo

http://console-demo.typesafe.com
http://console-demo.typesafe.com

...we have much much more

Dataflow

...we have much much more
FSM

Transactors

Pub/Sub

ZeroMQ

Microkernel

IO

TestKit

Agents

SLF4J

Durable Mailboxes

EventBus

Camel

TypedActor

Extensions

get it and learn more
http://akka.io

http://typesafe.com

http://letitcrash.com

http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/

E0F

Akka Cluster
Upcoming features

One tree to rule them all

One tree to rule them all

One tree to rule them all

The Magic Sauce

• User code only sees cluster://... names

• ActorRef becomes repointable
– local (current ActorCell)
– remote (new RemoteActorCell)

• Can now move actors around transparently
– Actor encapsulation makes it possible

What does this enable?

• Actor migration

• Actor replication

• Automatic cluster partitioning
– later also based on runtime metrics

• Node fail-over
– first for stateless actors
– later for stateful actors using event sourcing

➾ Fault Tolerance & Distribution

