Scalin //A
50%’22042 e/ a k ka

Jonas Boner

CTO
@jboner

o= Typesafe

AN

Sca/ 117
Sof Z‘warz oIt A a k ka

Selection of Akka Production Users

o (S ¢ /IR
ﬂ Y ity /) BILZARD

amazon.com
c?l%UBS SIEMENS ~ , B KLOUT

v ® llllnlll. su
W W3 HSBC® ‘(o' Wave JuniPer

NETWORKS

Autodesk CREDITSUISSE\ o
¢’ IGN
ates O, mware: - ggdideg .
< OOYALA o T GbiQUO’
W [J cartomaric & novirec

T8 Webware

Bl|B|C
&

Answers.com SLazavea Ebanksimple zeebox

o= Typesafe

2\
akka

Manage System Overload

Typesafe akka

Automatic Replication & Distribution

for Fault-tolerance & Scalability
A\

o= Typesafe akka

® Never think In terms of shared state, state
visibility, threads, locks, concurrent collections,
thread notifications etc.

=== Typesafe

2\
akka

® Never think In terms of shared state, state
visibility, threads, locks, concurrent collections,
thread notifications etc.

® | ow level concurrency plumbing BECOMES
SIMPLE WORKFLOW - you only think about how
messages flow In the system

2\
akka

® Never think In terms of shared state, state
visibility, threads, locks, concurrent collections,

thread notifications etc.

® | ow level concurrency plumbing BECOMES
SIMPLE WORKFLOW - you only think about how
messages flow In the system

® You get high CPU utilization, low latency, high
throughput and scalability - FOR FREE as part of

the mode]

2\
akka

® Never think In terms of shared state, state
visibility, threads, locks, concurrent collections,
thread notifications etc.

® | ow level concurrency plumbing BECOMES
SIMPLE WORKFLOW - you only think about how
messages flow In the system

® You get high CPU utilization, low latency, high
throughput and scalability - FOR FREE as part of
the model

® Proven and superior model for detecting and
recovering from errors
A\

=== Typesafe akka

» ’ ,

.rﬂ. g

2

Distributable by Design

akka

Distributable by Design

® Actors are location transparent & distributable by design

AN
=== Typesafe akka

Distributable by Design

® Actors are location transparent & distributable by design

® Scale UP and OUT for free as part of the model

AN
=== Typesafe akka

Distributable by Design

® Actors are location transparent & distributable by design
® Scale UP and OUT for free as part of the model
® You get the PERFECT FABRIC for the CLOUD

A\
o= Typesafe akka

Distributable by Design

® Actors are location transparent & distributable by design
® Scale UP and OUT for free as part of the model
® You get the PERFECT FABRIC for the CLOUD

— elastic & dynamic

A\
o= Typesafe akka

Distributable by Design

® Actors are location transparent & distributable by design
® Scale UP and OUT for free as part of the model
® You get the PERFECT FABRIC for the CLOUD

— elastic & dynamic

— fault-tolerant & self-healing

A\
o= Typesafe akka

Distributable by Design

® Actors are location transparent & distributable by design
® Scale UP and OUT for free as part of the model
® You get the PERFECT FABRIC for the CLOUD

— elastic & dynamic
— fault-tolerant & self-healing

— adaptive load-balancing, cluster rebalancing & actor migration

A\
o= Typesafe akka

Distributable by Design

® Actors are location transparent & distributable by design
® Scale UP and OUT for free as part of the model
® You get the PERFECT FABRIC for the CLOUD

— elastic & dynamic
— fault-tolerant & self-healing
— adaptive load-balancing, cluster rebalancing & actor migration

— build extremely loosely coupled and dynamic systems that can
change and adapt at runtime

$Y 4N
o= Typesafe akka

=== Typesafe

—HOW

can we achieve this!

AN
akka

Let’s use A

N
-
-
-

_?9(‘

4

e

=== Typesafe

VWhat I1s an Actor?

2\
akka

VWhat I1s an Actor?

® Akka's unit of code organization is called an Actor

2\
akka

VWhat I1s an Actor?

® Akka's unit of code organization is called an Actor

® Actors helps you create concurrent, scalable and
fault-tolerant applications

2\
akka

VWhat I1s an Actor?

® Akka's unit of code organization is called an Actor

® Actors helps you create concurrent, scalable and
fault-tolerant applications

® | ke Java EE servlets and session beans, Actors Is a
model for organizing your code that keeps many
"policy decisions’” separate from the business logic

2\
akka

VWhat I1s an Actor?

Akka's unit of code organization is called an Actor

Actors helps you create concurrent, scalable and
fault-tolerant applications

Like Java EE servlets and session beans, Actors Is a
model for organizing your code that keeps many
"policy decisions’” separate from the business logic

Actors may be new to many in the Java community,
but they are a tried-and-true concept (Hewitt 197/3)

used for many years In telecom systems with 9 nines
uptime

2\
akka

VWhat can | use Actors for?

2\
akka

VWhat can | use Actors for?

In different scenarios, an Actor may be an
alternative to:

2\
akka

VWhat can | use Actors for?

In different scenarios, an Actor may be an
alternative to:

- a thread

2\
akka

VWhat can | use Actors for?

In different scenarios, an Actor may be an
alternative to:

- a thread

— an object instance or component

2\
akka

VWhat can | use Actors for?

In different scenarios, an Actor may be an
alternative to:

- a thread
— an object instance or component

— a callback or listener

2\
akka

VWhat can | use Actors for?

In different scenarios, an Actor may be an
alternative to:

- a thread
— an object instance or component
— a callback or listener

—- asingleton or service

2\
akka

VWhat can | use Actors for?

In different scenarios, an Actor may be an
alternative to:

- a thread

— an object instance or component
— a callback or listener

—- asingleton or service

- a router, load-balancer or pool

2\

o= Typesafe akka

VWhat can | use Actors for?

In dr

alternative to:

a thread

ferent scenarios, an Actor may be an

an object instance or component

a callback or listener
a singleton or service
a router; load-balancer or

a Java EE Session Bean or

DOO|

Vessage-Driven Bean

2\
akka

VWhat can | use Actors for?

In different scenarios, an Actor may be an

alternative to:

- a thread

— an object instance or component

— a callback or listener
—- asingleton or service
— a router, load-balancer or
— a Java EE Session Bean or

- an out-of-process service

DOO|

Vessage-Driven Bean

2\
akka

VWhat can | use Actors for?

In dr

alternative to:

a thread

ferent scenarios, an Actor may be an

an object instance or component

a callback or listener
a singleton or service
a router, load-balancer or
a Java EE Session Bean or

an out-of-process service

DOO|

Vessage-Driven Bean

2\

a Finrte State Machine (FSM) akka

S0, what Is the

Model?

itt-on-actors

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Rad

b @
-

itt-on-actors

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Rad

b @
-

itt-on-actors

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

Rad

b @
-

itt-on-actors

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

>

i

torage

= C'\ nication

Rad

b @
-

itt-on-actors

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

L
torage

" C'\ nication

- 3 axioms - When ar recelives a message It can:

itt-on-actors

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

w 5
- Storage
- C'\ glfeciile]p
— 3 axioms - When ar

- Create new Actors

receives a message It can:

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

w . S
rage
= C'1 nication

- 3 axioms - VWhen an

— Create new Actdifes

recelives a message It can:

- Send messages to Actors I

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

w

torage

- C'\ nication
— 3 axioms - When an

— Create new Actors

- Send messages to Actors I

recelives a message It can:

‘s

e next message it rece

-

itt-on-actors

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors

4 core Actor operations

. CREAT
2. SEND
3. BECOME

4. SUPERVISE

2\

o= Typesafe akka

0. DEFINE

/

case class Greeting(who: String)

~

class GreetingActor extends Actor with ActorlLogging {

}

_

def receive = {
case Greeting(who) => log.info("Hello " + who)

}

/

2\
akka

0. DEFINE

4 N
Define the message(s) the Actor

A/

/

should be able to respond to
/s

case class Greeting(who: String)

~

class GreetingActor extends Actor with ActorlLogging {

}

_

def receive = {
case Greeting(who) => log.info("Hello " + who)

}

/

2\
akka

0. DEFINE

4)

Define the message(s) the Actor
should be able to respond to
4 N/

/ V‘/ Define the Actor class
case class Greetiﬁgéﬁ:o. ST IITyT /

~

class GreetingActor extends Actor with ActorlLogging {

def receive = {
case Greeting(who) => log.info("Hello " + who)
s

}

_

/

2\
akka

0. DEFINE

4)

Define the message(s) the Actor
should be able to respond to
4 N/

/ V‘/ Define the Actor class
case class Greetin%q. ST IITyT /

~

class GreetingActor extends Actor with ActorlLogging {

def receive = {
case Greeting(who) => log.info("Hello " + who)

¢\

/

\
Define the Actor’s behavioj

2\
akka

| CREAITE

® CREATE - creates a new instance of an Actor

® xtremely lightweight (2.7 Million per Gb RAM)

® \ery strong encapsulation - encapsulates:
- state
- behavior

— message queue
® State & behavior is Indistinguishable from each other

® Only way to observe state Is by sending an actor a

message and see how It reacts

4N
=== Typesafe akka

CREATE Actor

val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props[GreetingActor], name = "greeter")

2\
akka

CREATE Actor

Create an Actor systemj

val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props[GreetingActor], name

"greeter")

2\
akka

CREATE Actor

-

N
Create an Actor system(A

val system = ActorSystem('"MySystem") /444;/

val greeter = system.actorOf(Props[GreetingActor], name

CUm”conﬂguranrZJ

"greeter")

2\
akka

CREATE Actor

4)

N
Create an Actor system(A

val system = ActorSystem('"MySystem") /

val greeter = system.actorOf(Props[GreetingActor], name = "greeter")

[Give it a name

ctor conﬂgurationj

2\

=== Typesafe akka

CREATE Actor

4)

N
Create an Actor system(A

val system = ActorSystem('"MySystem") /

val greeter = system.actorOf(Props[GreetingActor], name = "greeter")

< a

\Create the Actor] [Give it 2 name

ctor conﬂgurationj

2\

=== Typesafe akka

CREATE Actor

4)

N
Create an Actor system(A

val system = ActorSystem('"MySystem") /

val greeter = system.actorOf(Props[GreetingActor], name = "greeter")

N N a

You get an ActorRef bac|<)ate the ACtO'”] [Give it a name

-

ctor conﬂgurationj

2\

=== Typesafe akka

Actors can form hierarchies

Guardian System Actor

Actors can form hierarchies

Guardian System Actor

w s}'stem.actorOf(Pros[F]’uF 00" |

—— =

Actors can form hierarchies

Guardian System Actor

w s}'stem.actorOf(Pros[F]’uF 00" |

—— =

Actors can form hierarchies

Guardian System Actor

I

| context.actorOf(Prop[,“A”) |

j;

Actors can form hierarchies

Guardian System Actor

@ context.actorOf(Props[A],“A”) |

Actors can form hierarchies

Guardian System Actor

o O
OJO O
O @ @) ©

Name resolution - like a file-system

Guardian System Actor

o O
OJO O
O @ @) ©

Name resolution - like a file-system

Guardian System Actor

Name resolution - like a file-system

Guardian System Actor

Name resolution - like a file-system

Guardian System Actor

Name resolution - like a file-system

Guardian System Actor

| [FoolA/B

' 4oo/A/ - ;

=== Typesafe

2. SEND

2\
akka

o SEN

2. SEND

D - sends a message to an Actor

2\
akka

2. SEND

® SEND - sends a message to an Actor

® Asynchronous and Non-blocking - Fire-forget

2\
akka

2. SEND

® SEND - sends a message to an Actor

® Asynchronous and Non-blocking - Fire-forget

® EVERY THING is asynchronous and lockless

2\
akka

2. SEND

® SEND - sends a message to an Actor

® Asynchronous and Non-blocking - Fire-forget
® EVERY THING is asynchronous and lockless
® verything happens Reactively

2\
akka

2. SEND

® SEND - sends a message to an Actor

® Asynchronous and Non-blocking - Fire-forget
® EVERY THING is asynchronous and lockless
® verything happens Reactively

- An Actor is passive until a message Is sent to I,
which triggers something within the Actor

4N
=== Typesafe akka

2. SEND

® SEND - sends a message to an Actor

® Asynchronous and Non-blocking - Fire-forget
® EVERY THING is asynchronous and lockless
® verything happens Reactively

- An Actor is passive until a message Is sent to I,
which triggers something within the Actor

- Messages Is the Kinetic Energy in an Actor system

4N
=== Typesafe akka

2. SEND

® SEND - sends a message to an Actor

® Asynchronous and Non-blocking - Fire-forget
® EVERY THING is asynchronous and lockless
® verything happens Reactively

- An Actor is passive until a message Is sent to I,
which triggers something within the Actor

- Messages Is the Kinetic Energy in an Actor system

- Actors can have lots of buffered Potential Energy
but can't do anything with 1t until it i1s triggered by

d MesSsSage
: AN
=== Typesafe akka

SEND messa

-

//:ase class Greeting(who: String)

class GreetingActor extends Actor with ActorlLogging {
def receive = {
case Greeting(who) => log.info("Hello " + who)

}
}

val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props[GreetingActor], name
\\greeter | Greeting("Charlie Parker")

"greeter")

v

=== Typesafe

2\
akka

SEND messa

-

//:ase class Greeting(who: String)

class GreetingActor extends Actor with ActorlLogging {
def receive = {
case Greeting(who) => log.info("Hello " + who)

}
}

val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props[GreetingActor], name
\\greeter | Greeting("Charlie Parker")

"greeter")

v

Sendtherneﬁﬁg%)

=== Typesafe

2\
akka

~ull example

//;ase class Greeting(who: String) ‘\\

class GreetingActor extends Actor with ActorLogging {

def receive = {
case Greeting(who) => log.info("Hello " + who)

I3
I3
val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props|[GreetingActor], name = "greeter")
\\?reeter ! Greeting("Charlie Parker") 4//

'\
=== Typesafe akka

Routers

© Bob Elsdale

Routers

-~

val router =
system.actorOf (
Props [SomeActor].withRouter
RoundRobinRouter(nrOfInstances

5)))

~

/

2\
akka

Router + Resizer

-~

val resizer =

DefaultResizer(lowerBound = 2, upperBound = 15)

val router =

system.actorOf(
Props [ExampleActorl].withRouter
RoundRobinRouter(resizer = Some(resizer))))

~

/

2\
akka

...or from contig

4)
akka.actor.deployment {

/path/to/actor {
router = round-robin
nr—-of—-instances = 5

+

}
_ /

...or from contig

4)
akka.actor.deployment {

/path/to/actor {
router = round-robiln
resizer {

lower—-bound
upper—-bound

}

12
15

}
}

_

3. BECOME

2\
akka

3. BECOME

® BECOME - dynamically redefines Actor’s behavior

2\
akka

3. BECOME

® BECOME - dynamically redefines Actor’s behavior

® [riggered reactively by receive of message

2\
akka

3. BECOME

® BECOME - dynamically redefines Actor’s behavior

® [riggered reactively by receive of message

® |n a type system analogy
type - changed Interface,

it Is as If the object changed

brotocol & implementation

2\
akka

3. BECOME

® BECOME - dynamically redefines Actor’s behavior

® [riggered reactively by receive of message

n a type system analogy

type - changed Interface,

it Is as If the object changed

brotocol & implementation

® Will now react differently to the messages It receives

2\
akka

3. BECOME

® BECOME - dynamically redefines Actor’s behavior

® [riggered reactively by receive of message

n a type system analogy

type - changed Interface,

it Is as If the object changed

brotocol & implementation

® Will now react differently to the messages It receives

® Behaviors are stacked & can be pushed and popped

=== Typesafe

2\
akka

Why would | want to do that!

A\
o= Typesafe akka

Why would | want to do that!

® | et 3 highly contended Actor adaptively transform
tself iInto an Actor Pool or a Router

74N
o= Typesafe akka

Why would | want to do that!

® | et 3 highly contended Actor adaptively transform
tself iInto an Actor Pool or a Router

® |[mplement an FSM (Finrte State Machine)

74N
o= Typesafe akka

Why would | want to do that!

® | et 3 highly contended Actor adaptively transform
tself iInto an Actor Pool or a Router

® |[mplement an FSM (Finrte State Machine)

® |mplement graceful degradation

74N
o= Typesafe akka

Why would | want to do that!

® | et 3 highly contended Actor adaptively transform
tself iInto an Actor Pool or a Router

® |[mplement an FSM (Finrte State Machine)
® |mplement graceful degradation

® Spawn up (empty) generic Worker processes that
can become whatever the Master currently needs

74N
o= Typesafe akka

Why would | want to do that!

® | et 3 highly contended Actor adaptively transform
tself iInto an Actor Pool or a Router

® |[mplement an FSM (Finrte State Machine)
® |mplement graceful degradation

® Spawn up (empty) generic Worker processes that
can become whatever the Master currently needs

® Other: Use your imagination!

74N
o= Typesafe akka

Why would | want to do that!

® | et 3 highly contended Actor adaptively transform
tself iInto an Actor Pool or a Router

® |[mplement an FSM (Finrte State Machine)
® |mplement graceful degradation

® Spawn up (empty) generic Worker processes that
can become whatever the Master currently needs

® Other: Use your imagination!

® \ery useful once you get the used to It

A\
o= Typesafe akka

pecome

context become { *\\
// new body
case NewMessage =>

¥

"l /

—allure Recovery

Our Disaster Recovery Plan
Goes Something Luke ThlS

~allure Recovery

Fallure Recovery In Java/C/C# etc.

* You are given a SINGLE thread of control

=== Typesafe

Fallure Recovery In Java/C/C# etc.

* You are given a SINGLE thread of control

* [f this thread blows up you are screwed

== Typesafe

Fallure Recovery In Java/C/C# etc.

* You are given a SINGLE thread of control
* [f this thread blows up you are screwed

* S0 you need to do all explicit error handling
WITHIN this single thread

== Typesafe

Fallure Recovery In Java/C/C# etc.

You are given a SINGLE thread of control
It this thread blows up you are screwed

So you need to do all explicit error handling
WITHIN this single thread

To make things worse - errors do not propagate
between threads so there 1s NO WAY OF EVEN
FINDING OUT that something have failed

== Typesafe

Fallure Recovery In Java/C/C# etc.

You are given a SINGLE thread of control
It this thread blows up you are screwed

So you need to do all explicit error handling
WITHIN this single thread

To make things worse - errors do not propagate
between threads so there 1s NO WAY OF EVEN
FINDING OUT that something have failed

This leads to DEFENSIVE programming with:

== Typesafe

Fallure Recovery In Java/C/C# etc.

You are given a SINGLE thread of control
It this thread blows up you are screwed

So you need to do all explicit error handling
WITHIN this single thread

To make things worse - errors do not propagate
between threads so there 1s NO WAY OF EVEN
FINDING OUT that something have failed

This leads to DEFENSIVE programming with:
* Error handling TANGLED with business logic

== Typesafe

Fallure Recovery In Java/C/C# etc.

You are given a SINGLE thread of control
It this thread blows up you are screwed

So you need to do all explicit error handling
WITHIN this single thread

To make things worse - errors do not propagate
between threads so there 1s NO WAY OF EVEN
FINDING OUT that something have failed

This leads to DEFENSIVE programming with:
* Error handling TANGLED with business logic
 SCAITTERED all over the code base

== Typesafe

Fallure Recovery In Java/C/C# etc.

* You are given a SINGLE thread of control
* [f this thread blows up you are screwed

* S0 you need to do all explicit error handling
WITHIN this single thread

* [o make things worse - errors do not propagate
between threads so there 1s NO WAY OF EVEN
FINDING OUT that something have failed

* This leads to DEFENSIVE programming with:
* Error handling TANGLED with business logic
 SCAITTERED all over the code base

VWe can do better than this!!!

== Typesafe

Lel Il

J

CRASH

2\

akka

=== Typesafe

2\
akka

4. SUPERVISE

2\
akka

4. SUPERVISE

® SUPERVISE - manage another Actor's failures

2\
akka

4.

SUPERVISE

® SUPERVISE - manage another Actor's failures

® Lrror hand
Actors mo
fallure

iNg In actors Is handle by letting

nitor (supervise) each other for

2\
akka

4. SUPERVISE

® SUPERVISE - manage another Actor's failures

® trror handling in actors Is handle by letting
Actors monitor (supervise) each other for

fallure

® [his means that
notification will

f an Ac

'Or crashes, a

De sent |

can react upon -

=== Typesafe

[0 NIS sUpervisor, who

‘he fallure

2\
akka

4. SUPERVISE

® SUPERVISE - manage an

® trror handling in actors
Actors monitor (supervi
fallure

® [his means that If an Ac

other Actor’s fallures

s handle by letting
se) each other for

'Or crashes, a

notification will be sent -

[0 NIS sUpervisor, who

can react upon the failure

® [his provides clean separation of processing

and error handling

=== Typesafe

2\
akka

ERROR
KERNEL

ERROR
KERNEL

akka

ERROR
KERNEL

=== Typesafe akka

ERROR
KERNEL

2\

=== Typesafe akka

NODE 1 NODE 2

O L

)
Akka

SUPERVISE Actor

Fve

"y S|

defaL

[t sL

ngle actor has a

Dervisor strategy.

Which s usually sufficient.
But it can be overridden.

2\
akka

SUPERVISE Actor

tvery single actor has a
default supervisor strategy.
Which s usually sufficient.

But it can be overridden.

//;1ass Supervisor extends Actor {
override val supervisorStrategy =

case _: ArithmeticException => Resume
case _: NullPointerException => Restart

c?se _: Exception => Escalate
qF?Tnpesa1e

~

(maxNrOfRetries = 10, withinTimeRange = 1 minute) {

AN
akka

SUPERVISE Actor

//;1ass Supervisor extends Actor {

override val supervisorStrategy =
(maxNrOfRetries = 10, withinTimeRange = 1 minute) {

case _: ArithmeticException => Resume
case _: NullPointerException => Restart
case _: Exception => Escalate

}

val worker = context.actorOf(Props[Worker])

def receive = {
case n: Int => worker forward n

A\
=== Typesafe akka

Manage faillure

class Worker extends Actor {

override def preRestart(
reason: Throwable, message: Option[Any]) {
... // clean up before restart

s

override def postRestart(reason: Throwable) {

. // 1nit after restart

\ .

~

/

2\
akka

Remoting

Remote deployment

Just feed the ActorSystem with this configuration

//;kka { ‘\\
actor {
provider = akka.remote.RemoteActorRefProvider
deployment <
/greeter {
remote =
}
}
s
. Y,

2\
akka

Remote deployment

Just feed the ActorSystem with this configuration

-

akka {

actor {
provider =
deployment
/greeter
remote

akka.remote.RemoteActorRefProvider

{
{

4
E Configure a Remote Provider)

2\
akka

Remote deployment

Just feed the ActorSystem with this configuration

e
(Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote =

A\
o= Typesafe akka

Remote deployment

Just feed the ActorSystem with this configuration

/7
(Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote =
)

Define Remote Path

VAN
o= Typesafe akka

Remote deployment

Just feed the ActorSystem with this configuration

/7
(Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote = akka://

)
Define Remote Path Protocol
2\

=== Typesafe akka

Remote deployment

Just feed the ActorSystem with this configuration

/7
(Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote = akka://MySystem

)
Define Remote Path Protocol Actor System
A\

=== Typesafe akka

Remote deployment

Just feed the ActorSystem with this configuration

/7
(Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote = akka://MySystem@machinel

_J \
Define Remote Path Protocol Actor System | Hostname ’
A\

2= Typesafe akka

/

Remote deployment

Just feed the ActorSystem with this configuration

/7
(Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote = akka://MySystem@machinel:2552

_J /\
Define Remote Path Protocol Actor System | Hostname ’ m

VAN
=== Typesafe akka

Remote deployment

Just feed the ActorSystem with this configuration

/7
(Configure a Remote Provider
akka {
For the Greeter actor E .
der = akka.remote.RemoteActorRefProvider
depyment {

/greeter {
remote = akka://MySystem@machinel:2552

_J /\
Define Remote Path Protocol Actor System | Hostname ’ m

Zero code changes PN
o= Typesafe akka

Remote Lookup

val greeter = system.actorFor(
"akka://MySystem@machinel:2552/user/greeter")

2\
akka

Can you see the
¢

Fixed Addresses

akka { ‘\\
actor A
provider = akka.remote.RemoteActorRefProvider
deployment <
/greeter {

remote = akka://MySystem@machinel:2552

/

=== Typesafe

val greeter = system.actorFor(
"akka://MySystem@machinel:2552/user/greeter")

2\
akka

=== Typesafe

Features

Gossip-based Cluster Membership

| eader determination

Accrual Fallure Detector

Cluster DeathWatch

Cluster-Aware Routers

2\
akka

cnable clustering

-

¥

_

~

akka {
actor {
provider = "akka.cluster.ClusterActorRefProvider"
I3
extensions = ["akka.cluster.Cluster"]
cluster {

seed-nodes = |
"akka://ClusterSystem@l27.0.0.1:2551",
"akka://ClusterSystem@l27.0.0.1:2552"
]

auto—-down = on

}

o= Typesafe

2\
akka

mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1

Configure a clustered router

o= Typesafe

akka.actor.deployment {
/statsService/workerRouter {
router = consistent-hashing
nr-of-instances = 100

cluster {
enabled = on

~

max-nr—-of-instances—-per—-node = 3

allow-local-routees = on

¥

/

2\
akka

Console

free for developers later in the fall

o

Search (or ‘help’)

=== Typesafe

ve demo

2\
akka

http://console-demo.typesafe.com
http://console-demo.typesafe.com

we have

we have

- FSM
-ventBus TactKit
Pub/Sub
Durable Mailboxes
1O

| Camel

Microkernel SLF4
TypedActor
/eroMQ Yataflow Transactors

Agents -Xtensions

http://akka.lo
http://letitcrash.com
http://typesate.com

http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/

2\
akka

“luster

.

— pcing features

T,

——y e
Sy S s Y ety

e ~ q e oo’ ‘ - 4 : -.- : : ‘
,v:“-.o ;V".v. oy w. - =
R (N2 A ;w. .

One tre

=== Typesafe O

rule them all

2\
akka

One tre rule them all

S
-
o,

-
4+

D
)
-
O
4
o,
&
4+
o,

O

The Magic Sauce

* User code only sees cluster://... names

o ActorRef becomes repointable

— local (current ActorCell)
— remote (new RemoteActorCell)

* (Can now move actors around transparently

— Actor encapsulation makes 1t possible

A\
=== Typesafe akka

VWhat does this enable?

* Actor migration
* Actor replication

* Automatic cluster partitioning

— |ater also based on runtime metrics

 Node faill-over

— first for stateless actors
— later for stateful actors using event sourcing

=> Fault Tolerance & Distribution
AN

=== Typesafe akka

