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Manage System Overload



Automatic Replication & Distribution

for Fault-tolerance & Scalability
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Program at a Higher Level
• Never think in terms of shared state, state 

visibility, threads, locks, concurrent collections, 
thread notifications etc.

• Low level concurrency plumbing BECOMES 
SIMPLE WORKFLOW - you only think about how 
messages flow in the system

• You get high CPU utilization, low latency, high 
throughput and scalability - FOR FREE as part of 
the model

• Proven and superior model for detecting and 
recovering from errors
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Distributable by Design

• Actors are location transparent & distributable by design

• Scale UP and OUT for free as part of the model

• You get the PERFECT FABRIC for the CLOUD

- elastic & dynamic

- fault-tolerant & self-healing

- adaptive load-balancing,  cluster rebalancing & actor migration

- build extremely loosely coupled and dynamic systems that can 
change and adapt at runtime
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Let’s use Actors
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What is an Actor?

• Akka's unit of code organization is called an Actor 

• Actors helps you create concurrent, scalable and 
fault-tolerant applications

• Like Java EE servlets and session beans, Actors is a 
model for organizing your code that keeps many 
“policy decisions” separate from the business logic

• Actors may be new to many in the Java community, 
but they are a tried-and-true concept (Hewitt 1973) 
used for many years in telecom systems with 9 nines 
uptime
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What can I use Actors for?
In different scenarios, an Actor may be an 
alternative to: 

- a thread

- an object instance or component

- a callback or listener

- a singleton or service

- a router, load-balancer or pool

- a Java EE Session Bean or Message-Driven Bean

- an out-of-process service

- a Finite State Machine (FSM)



So, what is the

Actor Model?
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Carl Hewitt’s definition

http://bit.ly/hewitt-on-actors

- The fundamental unit of computation that embodies: 

- Processing

- Storage

- Communication

- 3 axioms - When an Actor receives a message it can:

- Create new Actors

- Send messages to Actors it knows

- Designate how it should handle the next message it receives

http://bit.ly/hewitt-on-actors
http://bit.ly/hewitt-on-actors


4 core Actor operations

0.  DEFINE

1.  CREATE

2.  SEND

3.  BECOME

4.  SUPERVISE
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case class Greeting(who: String)

class GreetingActor extends Actor with ActorLogging {
  def receive = {
    case Greeting(who) => log.info("Hello " + who)
  }
}
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1. CREATE
• CREATE - creates a new instance of an Actor

• Extremely lightweight (2.7 Million per Gb RAM)

• Very strong encapsulation - encapsulates:

-   state

-   behavior

-   message queue

• State & behavior is indistinguishable from each other

• Only way to observe state is by sending an actor a 
message and see how it reacts
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CREATE Actor

Create the Actor

case class Greeting(who: String)

class GreetingActor extends Actor with ActorLogging {
  def receive = {
    case Greeting(who) => log.info("Hello " + who)
  }
}

val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props[GreetingActor], name = "greeter")

Give it a nameYou get an ActorRef back

Create an Actor system Actor configuration
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Guardian System Actor

Name resolution - like a file-system
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2. SEND
• SEND - sends a message to an Actor

• Asynchronous and Non-blocking - Fire-forget

• EVERYTHING is asynchronous and lockless 

• Everything happens Reactively

- An Actor is passive until a message is sent to it, 
which triggers something within the Actor

- Messages is the Kinetic Energy in an Actor system

- Actors can have lots of buffered Potential Energy 
but can't do anything with it until it is triggered by 
a message
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SEND message

Send the message

case class Greeting(who: String)

class GreetingActor extends Actor with ActorLogging {
  def receive = {
    case Greeting(who) => log.info("Hello " + who)
  }
}

val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props[GreetingActor], name = "greeter")
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case class Greeting(who: String)

class GreetingActor extends Actor with ActorLogging {
  def receive = {
    case Greeting(who) => log.info("Hello " + who)
  }
}

val system = ActorSystem("MySystem")
val greeter = system.actorOf(Props[GreetingActor], name = "greeter")
greeter ! Greeting("Charlie Parker")

Full example



Routers



Load Balancing



Routers

val router = 
 system.actorOf(
   Props[SomeActor].withRouter(
    RoundRobinRouter(nrOfInstances = 5)))



Router + Resizer

val resizer = 
  DefaultResizer(lowerBound = 2, upperBound = 15)

val router = 
  system.actorOf(
    Props[ExampleActor1].withRouter(
      RoundRobinRouter(resizer = Some(resizer))))



…or from config

  akka.actor.deployment {
    /path/to/actor {
      router = round-robin 
      nr-of-instances = 5
    }
  }



…or from config

  akka.actor.deployment {
    /path/to/actor {
      router = round-robin 
      resizer {
        lower-bound = 12
        upper-bound = 15
      }
    }
  }
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3. BECOME

• BECOME - dynamically redefines Actor’s behavior

• Triggered reactively by receive of message

• In a type system analogy it is as if the object changed 
type - changed interface, protocol & implementation

• Will now react differently to the messages it receives

• Behaviors are stacked & can be pushed and popped
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Why would I want to do that?
• Let a highly contended Actor adaptively transform 

itself into an Actor Pool or a Router

• Implement an FSM (Finite State Machine)

• Implement graceful degradation 

• Spawn up (empty) generic Worker processes that 
can become whatever the Master currently needs

• Other: Use your imagination!

• Very useful once you get the used to it



become

context become {
  // new body
  case NewMessage => 
    ...  
}
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• You are given a SINGLE thread of control

• If this thread blows up you are screwed 

• So you need to do all explicit error handling 
WITHIN this single thread

• To make things worse - errors do not propagate 
between threads so there is NO WAY OF EVEN 
FINDING OUT that something have failed

• This leads to DEFENSIVE programming with:

• Error handling TANGLED with business logic 

• SCATTERED all over the code base

We can do better than this!!!

Failure Recovery in Java/C/C# etc.



Just 

LET IT CRASH
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4. SUPERVISE
• SUPERVISE - manage another Actor’s failures

• Error handling in actors is handle by letting 
Actors monitor (supervise) each other for 
failure

• This means that if an Actor crashes, a 
notification will be sent to his supervisor, who 
can react upon the failure

• This provides clean separation of processing 
and error handling



Fault-tolerant 
onion-layered 
Error Kernel
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Error
Kernel

Node 1 Node 2



SUPERVISE Actor
Every single actor has a 

default supervisor strategy.
Which is usually sufficient.
But it can be overridden.



class Supervisor extends Actor {
  override val supervisorStrategy =
                     (maxNrOfRetries = 10, withinTimeRange = 1 minute) {
      case _: ArithmeticException  => Resume
      case _: NullPointerException => Restart
      case _: Exception            => Escalate
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  val worker = context.actorOf(Props[Worker])

  def receive = {
    case n: Int => worker forward n
  }
}
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But it can be overridden.



class Supervisor extends Actor {
  override val supervisorStrategy =
                     (maxNrOfRetries = 10, withinTimeRange = 1 minute) {
      case _: ArithmeticException  => Resume
      case _: NullPointerException => Restart
      case _: Exception            => Escalate
  }

  val worker = context.actorOf(Props[Worker])

  def receive = {
    case n: Int => worker forward n
  }
}

SUPERVISE Actor



class Worker extends Actor {
  ...
  
  override def preRestart(
    reason: Throwable, message: Option[Any]) {
    ... // clean up before restart
  }
  
  override def postRestart(reason: Throwable) {
    ... // init after restart
  }
}

Manage failure



Remoting



akka {
  actor {
    provider = akka.remote.RemoteActorRefProvider
    deployment {
      /greeter {
        remote =
      }
    }
  }
}

Just feed the ActorSystem with this configuration

Remote deployment



akka {
  actor {
    provider = akka.remote.RemoteActorRefProvider
    deployment {
      /greeter {
        remote =
      }
    }
  }
}

Just feed the ActorSystem with this configuration

Configure a Remote Provider

Remote deployment



akka {
  actor {
    provider = akka.remote.RemoteActorRefProvider
    deployment {
      /greeter {
        remote =
      }
    }
  }
}

Just feed the ActorSystem with this configuration

Configure a Remote Provider

For the Greeter actor

Remote deployment



akka {
  actor {
    provider = akka.remote.RemoteActorRefProvider
    deployment {
      /greeter {
        remote =
      }
    }
  }
}

Just feed the ActorSystem with this configuration

Configure a Remote Provider

Define Remote Path

For the Greeter actor

Remote deployment



akka {
  actor {
    provider = akka.remote.RemoteActorRefProvider
    deployment {
      /greeter {
        remote =
      }
    }
  }
}

Just feed the ActorSystem with this configuration

Configure a Remote Provider

Define Remote Path Protocol

For the Greeter actor

akka://

Remote deployment



akka {
  actor {
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akka {
  actor {
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}

Just feed the ActorSystem with this configuration
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akka {
  actor {
    provider = akka.remote.RemoteActorRefProvider
    deployment {
      /greeter {
        remote =
      }
    }
  }
}

Just feed the ActorSystem with this configuration

Zero code changes

Configure a Remote Provider

Define Remote Path Protocol Actor System Hostname Port

For the Greeter actor

akka://MySystem@machine1:2552

Remote deployment



Remote Lookup

val greeter = system.actorFor(
    "akka://MySystem@machine1:2552/user/greeter")



Can you see the 
problem?



Fixed Addresses
akka {
  actor {
    provider = akka.remote.RemoteActorRefProvider
    deployment {
      /greeter {
       remote = akka://MySystem@machine1:2552

      }
    }
  }
}

val greeter = system.actorFor(
    "akka://MySystem@machine1:2552/user/greeter")



Akka Cluster



Features

• Gossip-based Cluster Membership

• Leader determination

• Accrual Failure Detector

• Cluster DeathWatch

• Cluster-Aware Routers



Enable clustering
akka {  
  actor {
    provider = "akka.cluster.ClusterActorRefProvider"
    ...
  }
 
  extensions = ["akka.cluster.Cluster"]
 
  cluster {
    seed-nodes = [
      "akka://ClusterSystem@127.0.0.1:2551", 
      "akka://ClusterSystem@127.0.0.1:2552"
    ]
 
    auto-down = on
  }
}

mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1
mailto:ClusterSystem@127.0.0.1


Configure a clustered router

akka.actor.deployment	
  {
	
  	
  /statsService/workerRouter	
  {
	
  	
  	
  	
  router	
  =	
  consistent-­‐hashing
	
  	
  	
  	
  nr-­‐of-­‐instances	
  =	
  100

	
  	
  	
  	
  cluster	
  {
	
  	
  	
  	
  	
  	
  enabled	
  =	
  on
	
  	
  	
  	
  	
  	
  max-nr-of-instances-per-node = 3
	
  	
  	
  	
  	
  	
  allow-­‐local-­‐routees	
  =	
  on
	
  	
  	
  	
  }
	
  	
  }
}



Typesafe Console

free for developers later in the fall



Typesafe Console

free for developers later in the fall





http://console-demo.typesafe.com

live demo

http://console-demo.typesafe.com
http://console-demo.typesafe.com


...we have much much more



Dataflow

...we have much much more
FSM

Transactors

Pub/Sub

ZeroMQ

Microkernel

IO

TestKit

Agents

SLF4J

Durable Mailboxes

EventBus

Camel

TypedActor

Extensions



get it and learn more
http://akka.io

http://typesafe.com

http://letitcrash.com

http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
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Akka Cluster
Upcoming features



One tree to rule them all
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One tree to rule them all



The Magic Sauce

• User code only sees cluster://... names

• ActorRef becomes repointable
– local (current ActorCell)
– remote (new RemoteActorCell)

• Can now move actors around transparently
– Actor encapsulation makes it possible



What does this enable?

• Actor migration

• Actor replication

• Automatic cluster partitioning
– later also based on runtime metrics

• Node fail-over
– first for stateless actors
– later for stateful actors using event sourcing

➾ Fault Tolerance & Distribution


