
The Actor Model applied to the  
Raspberry Pi and the 

Embedded Domain 

Omer Kilic  ||  @OmerK 

omer@erlang-solutions.com 



Agenda 

• Current state of Embedded Systems 

• Overview of the Actor Model 

• Erlang Embedded Project 

• Modelling and developing systems using Erlang 

• Experiments with the Raspberry Pi 

• Future Explorations 

• Q & A 

 

03/12/2012 Tech Mesh London Slide 2 of 45 



Embedded Systems 

An embedded system is a computer system designed for 
specific control functions within a larger system, often 
with real-time computing constraints. It is embedded as 
part of a complete device often including hardware and 
mechanical parts. By contrast, a general-purpose 
computer, such as a personal computer (PC), is designed 
to be flexible and to meet a wide range of end-user needs. 

03/12/2012 Tech Mesh London 

“ 

- Infinite Wisdom of Wikipedia 

Slide 3 of 45 



#include <stats.h> 

Source: http://embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends 

 
 03/12/2012 Tech Mesh London Slide 4 of 45 

http://embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends
http://embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends
http://embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends
http://embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends
http://embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends
http://embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends
http://embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends
http://embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends


Current Challenges 

• Complex SoC platforms 

• “Internet of Things” 

– Connected and distributed systems 

• Multicore and/or heterogeneous devices 

• Time to market constraints  

03/12/2012 Tech Mesh London Slide 5 of 45 



Embedded Systems 

• Bare Metal 

– No underlying OS or high level abstractions 

• RTOS 

– Minimal interrupt and switching latency, 
scheduling guarantees, minimal jitter 

• Embedded Linux 

– Slimmed down Linux with hardware interfaces 

03/12/2012 Tech Mesh London Slide 6 of 45 



RTOS Concepts 

• Notion of “tasks” 

• OS-supervised interprocess messaging 

– Shared memory 

• Mutexes/Semaphores/Locks 

• Scheduling 

– Pre-emptive: event driven 

– Round-robin: time multiplexed 

 

03/12/2012 Tech Mesh London Slide 7 of 45 



Embedded Linux 

• Not a new concept, increased popularity due 
to abundant supply of cheap boards 
– Raspberry Pi, Beagleboard/Beaglebone, Gumstix et al. 

• Familiar set of tools for software developers, 
new territory for embedded engineers 

– No direct mapping for RTOS concepts, especially 
tasks 

• Complex device driver framework 

– Here be dragons 

03/12/2012 Tech Mesh London Slide 8 of 45 



Actor Model 

• Proposed in 1973 by Hewitt, Bishop and Steiger 

– “Universal primitives for concurrent computation” 

• No shared-state, self-contained and atomic 

• Building blocks for modular, distributed and 
concurrent systems 

• Implemented in a variety of programming 
languages 

03/12/2012 Tech Mesh London Slide 9 of 45 



Actor Model 

• Asynchronous message passing 

– Messages kept in a mailbox and processed in the 
order they are received in 

• Upon receiving messages, actors can: 

– Make local decisions and change internal state 

– Spawn new actors 

– Send messages to other actors 

03/12/2012 Tech Mesh London Slide 10 of 45 



Actor Model 

 

03/12/2012 Tech Mesh London Slide 11 of 45 



Actor Model 

 

03/12/2012 Tech Mesh London Slide 12 of 45 



Limitations of the Actor Model 

• No notion of inheritance or general hierarchy 

– Specific to language and library implementation 

• Asynchronous message passing can be 
problematic for certain applications 

– Ordering of messages received from multiple 
processes 

– Abstract definition may lead to inconsistency in 
larger systems 

• Fine/Coarse Grain argument 

03/12/2012 Tech Mesh London Slide 13 of 45 



Erlang Embedded 

• Knowledge Transfer Partnership between  
Erlang Solutions and University of Kent 

– Aim of the project:  Bring the benefits of 
concurrent  systems development using Erlang to 
the field of  embedded systems; through 
investigation, analysis,  software development and 
evaluation. 

 

http://erlang-embedded.com 

 

03/12/2012 Tech Mesh London Slide 14 of 45 

http://erlang-embedded.com/
http://erlang-embedded.com/
http://erlang-embedded.com/
http://erlang-embedded.com/


Why Erlang? 

• Implements the Actor model 

• Battle-tested at Ericsson and many other  
companies 

– Originally designed for embedded applications 

• Support for concurrency and distributed  
systems out of the box 

• Easy to create robust systems 

• (...and more!) 

 

03/12/2012 Tech Mesh London Slide 15 of 45 



High Availability/Reliability 

• Simple and consistent error recovery and  
supervision hierarchies 

• Built in fault-tolerance 

– Isolation of Actors 

• Support for dynamic reconfiguration 

– Hot code loading 

 

03/12/2012 Tech Mesh London Slide 16 of 45 



Creating an Actor 

spawn(math, fact, [5]) 

03/12/2012 Tech Mesh London 

Pid1 

Pid2 

math:fact(5) 

Slide 17 of 45 



Communication 

03/12/2012 Tech Mesh London 

{Pid1, msg} 
Pid1 Pid2 

Pid2 ! {self(), msg} 

Slide 18 of 45 



Bidirectional Links 

 

03/12/2012 Tech Mesh London 

Pid1 Pid2 

link(Pid2) 

Slide 19 of 45 



Process Error Handling 

• Let it Fail! 

– Abstract error handling away from the modules 

– Results in leaner modules 

• Supervision hierarchies 

 

03/12/2012 Tech Mesh London Slide 20 of 45 



Propagating Exit Signals 

03/12/2012 Tech Mesh London 

PidA PidB 

PidC 

{'EXIT', PidA, Reason} 

{
'
E
X
I
T
'
,
 
P
i
d
B
,
 
R
e
a
s
o
n
}
 

Slide 21 of 45 



Trapping Exits 

03/12/2012 Tech Mesh London 

PidA PidB 

PidC 

{'EXIT', PidA, Reason} 
process_flag(trap_exit, true) 

Slide 22 of 45 



External Interfaces 

• Native Implemented Functions (NIFs) and 
ports  used to interface external world to the 
Erlang  runtime. 

 

03/12/2012 Tech Mesh London Slide 23 of 45 



Erlang, the Maestro 

(flickr/dereckesanches) 

03/12/2012 Tech Mesh London Slide 24 of 45 



Raspberry Pi 

• 700 MHz ARM11 

• 256 MB DDR2 RAM 

• 10/100Mb Ethernet 

• 2x USB 2.0 

• (HDMI, Composite  
Video, 3.5mm 
Stereo  Jack, DSI, 
CSI-2) 

 

03/12/2012 Tech Mesh London 

$35 

Slide 25 of 45 



Raspberry Pi in Education 

• The Raspberry Pi Foundation is a 
UK registered charity. 

• Mission statement: "...to promote 
the study of computer science and 
related topics, especially at school 
level, and to put the fun back into 
learning computing." 

 

Future Engineers/Programmers! 

 

03/12/2012 Tech Mesh London 

(flickr/lebeus) 

Slide 26 of 45 



Raspberry Pi Peripherals 

• GPIO 

• UART 

• I2C 

• I2S 

• SPI 

• PWM 

• DSI 

• CSI-2 

 
03/12/2012 Tech Mesh London Slide 27 of 45 



Accessing peripherals 

• Peripherals are memory mapped 

 

• Access via /dev/mem 

– Faster, needs root, potentially dangerous! 

• Use kernel modules/sysfs 

– Slower, doesn’t need root, easier, relatively safer 

03/12/2012 Tech Mesh London Slide 28 of 45 



GPIO Interface (I) 

init(Pin, Direction) -> 
 
  {ok, FdExport} = file:open("/sys/class/gpio/export", [write]), 
  file:write(FdExport, integer_to_list(Pin)), 
  file:close(FdExport), 
 
 
  {ok, FdPinDir} = file:open("/sys/class/gpio/gpio" ++ integer_to_list(Pin)              
++ "/direction", [write]), 
  case Direction of 
    in -> file:write(FdPinDir, "in"); 
    out -> file:write(FdPinDir, "out") 
  end, 
  file:close(FdPinDir), 
 
 
  {ok, FdPinVal} = file:open("/sys/class/gpio/gpio" ++ integer_to_list(Pin) 
++ "/value", [read, write]), 
 
  FdPinVal. 

03/12/2012 Tech Mesh London Slide 29 of 45 



GPIO Interface (II) 

write(Fd, Val) -> 
  file:position(Fd, 0), 
  file:write(Fd, integer_to_list(Val)). 
 
 
read(Fd) -> 
  file:position(Fd, 0), 
  {ok, Val} = file:read(Fd, 1), 
  Val. 
 
 
release(Pin) -> 
  {ok, FdUnexport} = file:open("/sys/class/gpio/unexport", 
[write]), 
  file:write(FdUnexport, integer_to_list(Pin)), 
  file:close(FdUnexport). 
 

03/12/2012 Tech Mesh London Slide 30 of 45 



Concurrency Demo 

03/12/2012 Tech Mesh London Slide 31 of 45 

http://vimeo.com/40769788 

http://vimeo.com/40769788
http://vimeo.com/40769788


Example: GPIO 

03/12/2012 Tech Mesh London 

PidA 

Pin17 

PidB 

PidC 

??? 

Slide 32 of 45 



Example: GPIO 

03/12/2012 Tech Mesh London 

PidA 

Pin17 

PidB 

PidC 

GPIO 
Proxy 

Slide 33 of 45 



GPIO Proxy 

• Replaces ‘locks’ in traditional sense of  
embedded design 

– Access control/mutual exclusion 

• Can be used to implement safety constraints 

– Toggling rate, sequence detection, direction 
control,  etc. 

03/12/2012 Tech Mesh London Slide 34 of 45 



Fine Grain Abstraction 

• Advantages 

– Application code becomes simpler 

– Concise and shorter modules 

– Testing becomes easier 

– Code re-use (potentially) increases 

• Disadvantage  

– Architecting fine grain systems is difficult 

 

03/12/2012 Tech Mesh London Slide 35 of 45 



Universal Peripheral/Component Modules 

 

03/12/2012 Tech Mesh London Slide 36 of 45 



Universal Peripheral/Component Modules 

 

03/12/2012 Tech Mesh London Slide 37 of 45 



TI OMAP Reference System 

03/12/2012 Tech Mesh London Slide 38 of 45 



Hardware Projects – Ponte 

 

03/12/2012 Tech Mesh London Slide 39 of 45 



Hardware Projects – Demo Board 

03/12/2012 Tech Mesh London Slide 40 of 45 



Hardware Simulator 

03/12/2012 Tech Mesh London Slide 41 of 45 



Future Explorations 

Parallella: 

03/12/2012 Tech Mesh London Slide 42 of 45 



Packages for Embedded Architectures 

https://www.erlang-solutions.com/downloads/download-erlang-otp 

 
03/12/2012 Tech Mesh London Slide 43 of 45 

https://www.erlang-solutions.com/downloads/download-erlang-otp
https://www.erlang-solutions.com/downloads/download-erlang-otp
https://www.erlang-solutions.com/downloads/download-erlang-otp
https://www.erlang-solutions.com/downloads/download-erlang-otp
https://www.erlang-solutions.com/downloads/download-erlang-otp
https://www.erlang-solutions.com/downloads/download-erlang-otp
https://www.erlang-solutions.com/downloads/download-erlang-otp


Erlang Embedded Training Stack 

• A complete package for people interested in 
developing the next generation of concurrent 
and distributed Embedded Systems 

• Training Modules: 

– Embedded Linux Primer 

– Erlang/OTP 101 

– Erlang Embedded Framework 

 

Get in touch if you’re interested. 

 
03/12/2012 Tech Mesh London Slide 44 of 45 



Thank you 

• http://erlang-embedded.com 

• embedded@erlang-solutions.com  

• @ErlangEmbedded 

 

03/12/2012 Tech Mesh London 

The world is concurrent. 
Things in the world don't share data. 
Things communicate with messages. 
Things fail. 

 
  - Joe Armstrong 
      Co-inventor of Erlang 

“ 

Slide 45 of 45 


