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Embedded Systems 

An embedded system is a computer system designed for 
specific control functions within a larger system, often 
with real-time computing constraints. It is embedded as 
part of a complete device often including hardware and 
mechanical parts. By contrast, a general-purpose 
computer, such as a personal computer (PC), is designed 
to be flexible and to meet a wide range of end-user needs. 
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“ 

- Infinite Wisdom of Wikipedia 
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#include <stats.h> 

Source: http://embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends 
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Current Challenges 

• Complex SoC platforms 

• “Internet of Things” 

– Connected and distributed systems 

• Multicore and/or heterogeneous devices 

• Time to market constraints  
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Embedded Systems 

• Bare Metal 

– No underlying OS or high level abstractions 

• RTOS 

– Minimal interrupt and switching latency, 
scheduling guarantees, minimal jitter 

• Embedded Linux 

– Slimmed down Linux with hardware interfaces 
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RTOS Concepts 

• Notion of “tasks” 

• OS-supervised interprocess messaging 

– Shared memory 

• Mutexes/Semaphores/Locks 

• Scheduling 

– Pre-emptive: event driven 

– Round-robin: time multiplexed 
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Embedded Linux 

• Not a new concept, increased popularity due 
to abundant supply of cheap boards 
– Raspberry Pi, Beagleboard/Beaglebone, Gumstix et al. 

• Familiar set of tools for software developers, 
new territory for embedded engineers 

– No direct mapping for RTOS concepts, especially 
tasks 

• Complex device driver framework 

– Here be dragons 
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Actor Model 

• Proposed in 1973 by Hewitt, Bishop and Steiger 

– “Universal primitives for concurrent computation” 

• No shared-state, self-contained and atomic 

• Building blocks for modular, distributed and 
concurrent systems 

• Implemented in a variety of programming 
languages 
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Actor Model 

• Asynchronous message passing 

– Messages kept in a mailbox and processed in the 
order they are received in 

• Upon receiving messages, actors can: 

– Make local decisions and change internal state 

– Spawn new actors 

– Send messages to other actors 
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Actor Model 
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Actor Model 
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Limitations of the Actor Model 

• No notion of inheritance or general hierarchy 

– Specific to language and library implementation 

• Asynchronous message passing can be 
problematic for certain applications 

– Ordering of messages received from multiple 
processes 

– Abstract definition may lead to inconsistency in 
larger systems 

• Fine/Coarse Grain argument 
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Erlang Embedded 

• Knowledge Transfer Partnership between  
Erlang Solutions and University of Kent 

– Aim of the project:  Bring the benefits of 
concurrent  systems development using Erlang to 
the field of  embedded systems; through 
investigation, analysis,  software development and 
evaluation. 

 

http://erlang-embedded.com 
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Why Erlang? 

• Implements the Actor model 

• Battle-tested at Ericsson and many other  
companies 

– Originally designed for embedded applications 

• Support for concurrency and distributed  
systems out of the box 

• Easy to create robust systems 

• (...and more!) 
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High Availability/Reliability 

• Simple and consistent error recovery and  
supervision hierarchies 

• Built in fault-tolerance 

– Isolation of Actors 

• Support for dynamic reconfiguration 

– Hot code loading 

 

03/12/2012 Tech Mesh London Slide 16 of 45 



Creating an Actor 

spawn(math, fact, [5]) 
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Pid1 

Pid2 

math:fact(5) 
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Communication 
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{Pid1, msg} 
Pid1 Pid2 

Pid2 ! {self(), msg} 

Slide 18 of 45 



Bidirectional Links 
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Pid1 Pid2 

link(Pid2) 
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Process Error Handling 

• Let it Fail! 

– Abstract error handling away from the modules 

– Results in leaner modules 

• Supervision hierarchies 
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Propagating Exit Signals 
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PidA PidB 

PidC 

{'EXIT', PidA, Reason} 
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Trapping Exits 
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PidA PidB 

PidC 

{'EXIT', PidA, Reason} 
process_flag(trap_exit, true) 
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External Interfaces 

• Native Implemented Functions (NIFs) and 
ports  used to interface external world to the 
Erlang  runtime. 
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Erlang, the Maestro 

(flickr/dereckesanches) 
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Raspberry Pi 

• 700 MHz ARM11 

• 256 MB DDR2 RAM 

• 10/100Mb Ethernet 

• 2x USB 2.0 

• (HDMI, Composite  
Video, 3.5mm 
Stereo  Jack, DSI, 
CSI-2) 
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$35 
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Raspberry Pi in Education 

• The Raspberry Pi Foundation is a 
UK registered charity. 

• Mission statement: "...to promote 
the study of computer science and 
related topics, especially at school 
level, and to put the fun back into 
learning computing." 

 

Future Engineers/Programmers! 
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(flickr/lebeus) 
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Raspberry Pi Peripherals 

• GPIO 

• UART 

• I2C 

• I2S 

• SPI 

• PWM 

• DSI 

• CSI-2 
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Accessing peripherals 

• Peripherals are memory mapped 

 

• Access via /dev/mem 

– Faster, needs root, potentially dangerous! 

• Use kernel modules/sysfs 

– Slower, doesn’t need root, easier, relatively safer 
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GPIO Interface (I) 

init(Pin, Direction) -> 
 
  {ok, FdExport} = file:open("/sys/class/gpio/export", [write]), 
  file:write(FdExport, integer_to_list(Pin)), 
  file:close(FdExport), 
 
 
  {ok, FdPinDir} = file:open("/sys/class/gpio/gpio" ++ integer_to_list(Pin)              
++ "/direction", [write]), 
  case Direction of 
    in -> file:write(FdPinDir, "in"); 
    out -> file:write(FdPinDir, "out") 
  end, 
  file:close(FdPinDir), 
 
 
  {ok, FdPinVal} = file:open("/sys/class/gpio/gpio" ++ integer_to_list(Pin) 
++ "/value", [read, write]), 
 
  FdPinVal. 
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GPIO Interface (II) 

write(Fd, Val) -> 
  file:position(Fd, 0), 
  file:write(Fd, integer_to_list(Val)). 
 
 
read(Fd) -> 
  file:position(Fd, 0), 
  {ok, Val} = file:read(Fd, 1), 
  Val. 
 
 
release(Pin) -> 
  {ok, FdUnexport} = file:open("/sys/class/gpio/unexport", 
[write]), 
  file:write(FdUnexport, integer_to_list(Pin)), 
  file:close(FdUnexport). 
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Concurrency Demo 
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Example: GPIO 
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PidA 

Pin17 

PidB 

PidC 

??? 
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Example: GPIO 
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PidA 

Pin17 

PidB 

PidC 

GPIO 
Proxy 
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GPIO Proxy 

• Replaces ‘locks’ in traditional sense of  
embedded design 

– Access control/mutual exclusion 

• Can be used to implement safety constraints 

– Toggling rate, sequence detection, direction 
control,  etc. 
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Fine Grain Abstraction 

• Advantages 

– Application code becomes simpler 

– Concise and shorter modules 

– Testing becomes easier 

– Code re-use (potentially) increases 

• Disadvantage  

– Architecting fine grain systems is difficult 
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Universal Peripheral/Component Modules 
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Universal Peripheral/Component Modules 
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TI OMAP Reference System 
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Hardware Projects – Ponte 
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Hardware Projects – Demo Board 
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Hardware Simulator 
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Future Explorations 

Parallella: 
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Packages for Embedded Architectures 

https://www.erlang-solutions.com/downloads/download-erlang-otp 
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Erlang Embedded Training Stack 

• A complete package for people interested in 
developing the next generation of concurrent 
and distributed Embedded Systems 

• Training Modules: 

– Embedded Linux Primer 

– Erlang/OTP 101 

– Erlang Embedded Framework 

 

Get in touch if you’re interested. 
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Thank you 

• http://erlang-embedded.com 

• embedded@erlang-solutions.com  

• @ErlangEmbedded 
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The world is concurrent. 
Things in the world don't share data. 
Things communicate with messages. 
Things fail. 

 
  - Joe Armstrong 
      Co-inventor of Erlang 

“ 
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