
Playframework,
Realtime Web

Sadek Drobi
Earle Casteldine

Web Oriented Architectures

Where are we now?

Exciting time to be in software development

Cloud, Distributed Computing, Data, Bigger Data,
Big Data, Infinite Data, Functional Programming
...

Object/Entity Oriented Programming

An object represents a business entity

Using getters and setter on that object
manipulates database rows automatically

Enough to learn an ORM/Active Record to make
a living

Very little problem solving

Object/Entity Oriented Programming

Then we rediscovered the importance of Data!

Object/Entity Oriented Programming

Object/Entity Oriented Programming

Object/Entity Oriented Programming

Object/Entity Oriented Programming

New Era with new challenges

Analyzing big sets of data

Using several machines for computing and
analyzing data

Integrating different sets of data in different
formats

Handling lots of users requests

Playframework

The Play framework makes it easier to build web
applications with Java & Scala.

Play is based on a lightweight, stateless, web-
friendly architecture for highly-scalable and
realtime web applications

 - thanks to its reactive model, based on Futures
and Iteratee IO.

Play was born to live in the clouds.

Demo

Why another web framework?

1 User = 1 Thread

Why another web framework?

Connections

New Era with new challenges

Analyzing big sets of data

Using several machines for computing and
analyzing data

Integrating different sets of data in different
formats

Handling lots of users requests

Playframework, for a new era with new
challenges

Analyze big sets of data: Functional Programming,
Collections, Data Structures

Using several machines for computing and
analyzing data

Integrating different sets of data in different
formats: Parsers, APIs and FP

Handling lots of users requests: Stateless Reactive
Architecture

Web apps integrating Distributed
Computing

Use distributed computing

Aggregate results back as a single response to the
user

Programming Model

Scheduled Computations,
Computations in the Future

How do we talk about these computations?
How do we manipulate them?

Scheduled Computations,
Computations in the Future

Future[T]

Scheduled Computations,
Computations in the Future

A Future

Represents a value that will be available in the
Future (or a Failure)

Provides a way to be notified whenever the
value is available (onComplete)

Has some nice composition properties

A Future, nice properties

 Future[Future[A]] => Future[A]

 List[Future[A]] => Future[List[A]]

Future[A] => (A => B) => Future[B]

And a nice api with map, flatMap, filter, collect,
recover, either and other higher order functions

Using Futures for aggregating
distributed computations

Context: Productivity tool used for discovery
through data visualization

Using Futures for aggregating
distributed computations

Browser

Backend

Graph Service Data Service

Demo

Using Futures for aggregating
distributed computations

waitAll kind of composition

We can do waitAny, waitEither, timeout, ...etc

You can compose all of these

Using Futures for aggregating
distributed computations

Context: Productivity tool used for discovery
through data visualization

Aggregating and streaming distributed
computations

Browser

Backend

Graph Service Data Service

Aggregating and streaming distributed
computations

We need a protocol to send messages to the
browser

We need a way to talk about Streams

How can we transform our list of computations
into a Stream?

On the browser

Comet, Server Sent Events, Websockets.

How can we talk about Streams at the
server side?

Is this what we really need to
deal with Streams?

 });

 // Send a single 'Hello!' message

 out.write("Hello!");

 }

How can we talk about Streams on the
server side?

Programming model

With nice properties

Compositional

InputStream / OutputStream

But they lack composition properties, and they
are blocking.

Did the industry move backwards?

Iteratee[E,R]

Consumes chunks of type E

Eventually computes a value of type R

Fancy fold, you can pause!

Iteratee[E,R]

Immutable state machine

Done(E,R)

Cont(E => Iteratee[E,R])

Error

Iteratee[E,R], nice properties

Iteratee[E,Iteratee[E,R]] => Iteratee[E,R]

Future[Iteratee[E,R]] => Iteratee[E,R]

Iteratee[E,R] => (R => U) => Iteratee[E,U]

Enumerator[E]

Iteratee[E,R] => Iteratee[E,R]

Enumerator[E], nice properties

Enumerator[Enumerator[E]] => Enumerator[E]

Future[Enumerator[E]] => Enumerator[E]

and some nice functions

map, flatMap, interleave, compose, ...

Aggregating and streaming distributed
computations

Browser

Backend

Graph Service Data Service

Demo

Enumerator[E], Iteratee[E,R]

take, takeWhile, drop, dropWhile, buffer, collect,
filter, map, scan, ...

Infinite Data

Live streams of realtime Data

Queues, Storm, ...

With Iteratees, Enumerators, and Enumeratees

Demo

Questions?

● www.playframework.com

● Check and play with the provided
samples

● Ask

